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Word-based software transactional memory only supports memory operations. To serve as a
full replacement for critical sections, arbitrary functions have to be supported as well. This work
presents a generic and extensible way for the transactional support of operations that work on
non-memory resources, so-called external actions. Each transaction is provided with transaction-
safe abstractions of non-transactional resources and functions. The transactional memory system
is extended by a transaction-local history, which holds any external actions that have been called
within the transaction. The history is used for validating the consistency of resources used by the
transaction, and for applying or undoing actions called from within the transaction. The work
introduces transaction-safe versions of common resources and operations of the posix standard,
such as memory allocation or file-descriptor I/O. It discusses trade-offs and problems when using
posix functionality in transactional code. At the end a detailed evaluation is presented, as well
as some ideas for future work on the topic.



Technische Universität Dresden / Fakultät Informatik

Diploma Thesis

Name, Vorname: Thomas Zimmermann
Studiengang: Diplominformatik
Matrikelnummer: 2939847
Thema: Transactional Execution of System Library Functions

Software Transactional Memory (STM) provides transactional guarantees for accesses to main memory.
This eases the implementation of concurrent data structures, for example. However, programmers thus
cannot embed code into memory transactions that accesses other resources besides the application’s
main memory. Removing this limitation and allowing external actions would significantly expand the
applicability of memory transactions (e.g., for failure atomicity).
Thus, STM implementations should support external actions. If there is already proper transaction sup-
port for such actions (e.g., file accesses in a transactional file system) they are straight-forward to combine
with memory transactions. However, the majority of the actions provided by existing libraries is not tran-
sactional, so combining them with memory transactions requires additional support code that isolates
them from other actions and makes them atomic if possible (by providing roll back mechanisms).
The aim of this diploma thesis is (A) to investigate how to provide transaction support for the external
actions contained in a typical system library and (B) to implement a prototype of such support for the
I/O functions in the GNU C Library (glibc).
The investigation should (1) cover which ways exist to provided transactional guarantees in this setting
in general, (2) classify typical C system library functions regarding whether transactional guarantees can
be reasonably provided, and how, and (3) discuss how error signaling and handling mechanisms of the
functions affect transactional execution and how these issues can be solved. Furthermore, it should be
studied how falling back to nontransactional execution (e.g., via irrevocability) can be avoided.
The prototype should be implemented as wrappers for selected glibc functions, focusing on low-level
I/O, and optionally stream I/O and filesystem operations. Not all functions need to be supported, but
the selection should be representative in the sense that it roughly covers all issues that may arise when
supporting all the functions. The implementation should strive to provide a framework or helper functions
to ease the process of implementing transaction support for other functions.
The evaluation of the thesis’ results should focus on achieved features (e.g., how much the applicability of
memory transactions has been expanded) and performance (e.g., single-thread overheads, scalability, and
performance with multiple threads). Additionally, it should be evaluated whether transactional execution
of system library functions conflicts with standards such as POSIX.

Betreuer: Dipl.-Inf. Torvald Riegel
Verantwortlicher Hochschullehrer: Prof. Christof Fetzer
Institut: Systemarchitektur
Lehrstuhl: Systems Engineering
Beginn am: 1.1.2009
Einzureichen am: 1.7.2009

Student Verantwortlicher Hochschullehrer
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1 Introduction

Word-based transactional memory systems only support memory operations. To be equally
versatile as critical sections, arbitrary functions need to be handled as well. This work describes
a generic and extensible framework for using C functions and non-transactional resources from
within memory transactions. In contrast to previous work on this topic, it provides a general and
flexible solution, and investigates the support for transactional versions of arbitrary components.

This first chapter introduces the topic and motivation in an informal way and gives some
information about the problems that have to be solved.

1.1 Retrospection

During the first 30 years of modern computer technology1 the execution speed of processor-bound
computer programs roughly doubled every 18 months. With each new processor generation most
old software ran faster than before; without having its programmer to optimize for the new
processors.

This changed [Sut05] around 2004. Processor manufacturers were unable to significantly im-
prove the performance of their products anymore, neither by increasing the clock speed, nor by
architectural changes.

The solution was to double the number of cores per processor, such that there are now really
two or more processors driving the computer. These multi-core architectures existed long before,
but not in the mass market. Multi-core systems were used and programmed by experts on this
field: people who often had very specific, computationally intensive problems to solve.

The introduction of multi-core systems to the mass market has kept the processors’ theoretical
performance doubling with each new processor generation. The drawback is that software per-
formance does not double automatically anymore. Instead, programmers now have to actively
modify their software to take advantage of the additional processor cores: they have to parallelize
the software.

1.2 Critical Sections

The major problem when parallelizing software is the use of resources that are shared among
several cores, such as global variables. The access to such resources is not automatically handled
among processor cores. Instead, every shared resource needs to be protected by some form of
concurrency control.

Concurrency control is the activity of coordinating the actions of processes that operate in
parallel, access shared data, and therefore potentially interfere with each other [BHG87].

Two basic strategies for controlling concurrency exist. Pessimistic concurrency control ensures
that once consistency has been validated, it holds true from the point of validation. This can
be achieved by the use of locks, which block other transactions from accessing the respective
resource.
1Let’s assume modern computer technology started in 1971 with the invention of the first microprocessor, which

made widespread use of computers possible in the first place.
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Optimistic concurrency control ensures that consistency holds true up until the point of val-
idation. This can be achieved by putting the resource under version control and comparing a
transaction’s local version with the global version of the resource.

The classic form of concurrency control is protection by the use of explicit locking. The piece
of code where this takes place is called a critical section. In a system with explicit locking a
critical section is implemented by

1. acquiring the locks of all concerned resources,

2. accessing these resources, and

3. releasing the locks.

Locking blocks other threads from accessing the lock’s resource. This is called mutual exclusion.
If a lock protects several independent resources at the same time, unrelated threads might be
blocked unnecessarily, which negatively affects performance. Therefore, the parallel program
should ideally contain one distinct lock for each independent resource. Such fine-grained locking
minimizes interference among threads and allows for good scalability.

On the other hand, applications with fine-grained locking easily have problems with deadlocks.
For example, thread T 1 wants to move items from a list x to another list y. For that purpose, it
has to acquire the lock for x and the lock for y. Another, unrelated thread T 2 wants to do the
same operation, but acquires the necessary locks in reversed order. When the locking operations
of both threads interleave, the result is a deadlock: a state where two or more threads wait for
each other to release their locks.

A possible solution is to reduce the number of locks to be acquired by a thread, possibly up
to a point where only one lock protects all shared resources in the program. Such coarse-grained
locking addresses the problem of deadlocks, but does not scale well if the number of concurrent
threads increases. In the example above, there would be one lock for all lists in the application.
Only acquiring this single lock prevents the lurking deadlock between T 1 and T 2, but also blocks
an unrelated thread T 3 working on a distinct list z.

A real-world example is the Big Kernel Lock, a global lock which protects data structures
within the Linux kernel from concurrent access. In [BH03] Bryant and Hawkes measured the
impact of this lock on the file-system performance for parallel I/O. Besides other observations
they found that in some cases up to 70 percent of the time was spend on waiting for the kernel
lock to be released.

So with coarse-grained locking, it is hard to create software which is highly concurrent, whereas
with fine-grained locking software is prone to deadlocks. Also, the explicit use of locks makes it
hard to build composable components. Ideally components should be self-contained. If distinct
components operate on a shared resource, they have to share the locks for the resource. This
makes implementation details visible to the components’ outside and breaks information hiding
among them.

1.3 Transactional Memory

Transactional memory [ST95] promises a way to solve these problems. Informally, a transaction
is a section of code that moves the system from one consistent state to another consistent state.
In the context of this work, a consistent state is one that could be observed after each transaction
during a serial execution of a set of concurrent transactions.
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Transactions are often defined by a set of common properties: atomicity, consistency, and
isolation [HR83].2 Atomicity guarantees that either all or no updates of a transaction are taking
effect. Consistency guarantees that the system is in a well-defined state before and after a
transaction executes, independently of whether the transaction commits or aborts. Isolation
guarantees that components outside of a transaction cannot see its intermediate states, but only
its final state after it has been committed to the system.

Transactional code

1. signals the beginning of the transaction,

2. executes the transaction,

3. signals its wish to commit the updates.

The difference to critical sections is the implicit protection of resources. All memory operations
go through the transactional memory system: a single software or hardware component which
detects conflicts among concurrently running transactions. A conflict is a state where two or
more transactions concurrently access the same data and at least one of them executes a write
operation [BHG87]. If a conflict is detected, all but one conflicting transactions are aborted and
have to restart.

The obvious advantage of this concept is that deadlocks can easily be prevented as all locking is
centralized in one component. Also, by refining the implementation of the transactional memory
system, the application can be scaled or adjusted to new workloads more easily than with critical
sections.

The disadvantage is the inability to handle anything else than main memory.3 With critical
sections, access to a shared resource is protected by the use of locks. The nature of the resource
is thereby unimportant. Transactional memory systems instead are hooked into the application’s
load and store operations on the main memory. This makes it impossible to handle other resources
without additional work.

1.4 External Actions

An external action is a function that accesses or modifies the state of a resource which is not
by default under the control of the transactional memory system. Therefore, the transactional
memory system cannot detect conflicts on this resource; and in the case of an abort of the
transaction, it cannot revoke updates to the resource’s state.

Assume a transaction T 1 reads a value x from main memory and writes it to a file. Between
the transaction’s write operation and its commit, another transaction T 2 commits an update
to x. The transactional memory system now aborts T 1 as it conflicts with the just committed
transaction T 2. However, T 1’s update to the file is not revoked because the transactional memory
system is not aware of it.

Several solutions to this problem are presented by Baugh and Zilles [BZ07]. The simplest
solution is to forbid any external actions. Obviously, this is inconvenient to the application
developer as it severely limits the applicability of transactional memory.

2The forth common property of transactions, durability, depends on the application and its environment. While
it is ensured by database systems, durability is at most partially provided by transactional memory systems.

3More precisely said: anything else than physical main memory. If a memory page has been mapped from device
memory, the application cannot access it with transactional semantics because writes to hardware devices are
typically not meant to be revocable.
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Another solution is to never abort a transaction that has executed an external action. Such
a non-abortable transaction is called irrevocable or inevitable. Before becoming irrevocable a
transaction has to validate that (1) it does not conflict with other transactions, and (2) there
is not yet another transaction running irrevocable. If both premises are met the transaction
becomes irrevocable; if not, the transaction is aborted. In the example above, T 2 would not
have been able to commit because it conflicted with T 1, which would be running irrevocably
after its write operation. The advantage of irrevocability is that it is easy to implement and
works in all cases because access’ to all resources is protected with respect to the boundaries
of the irrevocable transaction. The disadvantage is that irrevocability works like a big lock for
all resources in the system: It does not scale well and thus, when external actions are used
extensively, the performance of a multi-core system might be similar to that of a single-core
system.

A more scalable solution is the use of fine-grained concurrency control on the external resources
and its integration with the transactional memory system. Additionally, for each external action
there is a compensation action, which is called by the transactional memory system during
a transaction’s abort, It resets the resource to the state it had before the external action took
effect. In the example above, when T 1 is aborted, the write operation is undone during the abort.
The advantage of fine-grained concurrency control and compensation actions is the possibility to
use external actions in multiple concurrently running transactions, which enables better scaling
of the system. For example, if there are several transactions using a resource without conflicting,
all of them can run concurrently. The disadvantage is that this is more complicated to implement
than irrevocability. Also, it is not always possible to provide a compensation action. For example,
if a new process is forked from within a transaction, it is not possible to decide whether it is safe
to kill this process during an abort or not.

As a fourth possible solution, some actions can also be deferred into the transaction’s commit
phase, especially if no other actions depend on their results or the results can be simulated. In
the given example, the write operation by transaction T 1 would not be done until T 1 actually
commits.

1.5 Requirements

So far, this chapter only introduced the basic problems with external actions and their possible
solutions. This section discusses the requirements that external-action support should fulfill.
Looking at the transactional memory system on one side and a typical Unix system on the other
side, the important design aspects are

• correctness,

• standards compliance,

• extensibility, and

• performance.

These points are roughly in the order of their importance, but sometimes exceptions are
possible. Each is now discussed in more detail.

Correctness. Correctness defines the behavior of transactional code. The design presented in
this work strives to provide atomicity, consistency and isolation for transactions with external
actions. This is in line with the previous section on transactions.
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Informally, it shall be possible to atomically move all resources from one consistent state to
another consistent state. A consistent state is a state that could be observed after the successful
commit of a transaction in a serial execution of a set of transactions.

Isolation shall be provided among concurrent transactions. After the commit of the last
transaction of a set of concurrent transactions, it shall be possible to execute non-concurrent
code. The presented framework does not attempt to isolate transactions from other, concurrent
processes in the system. This would require support at the kernel level. In the case of this
work, the criteria for isolation is serializability. A schedule of a set of transactions is defined to
be serializable if its result is equivalent to the result of a serial schedule [BHG87]. Assume two
transactions, T 1 and T 2, that access two individual resources x and y. T 1 reads the value of x
and writes it to y. Between T 1’s read and write operation, transaction T 2 updates the value in
x. This schedule is not serializable. In the serial case, either T 1’s write to y finishes before T 2’s
write to x occurs, or T 2’s write finishes before T 1’s read occurs.

The design does not strive for durability. The presented framework is a transactional imple-
mentation of posix functionality, so that applications can replace their critical sections with
transactions. posix does not request durability itself, so this property is likely unnecessary for
the target applications. Additionally, durability strongly depends on the setup of the underlying
hardware and software; a transactional memory system cannot provide this by itself.

Standards compliance. Standards compliance requests that an operation that is executed
within a transaction has the same semantics as its non-transactional counterpart. This also
applies to series of operations.

Compliance with standards has two aspects. The transactional code should (1) formally comply
to the relevant standards, and (2) allow for the use of common practices, which means to allow
work to be done in the common (best) way.

The first aspect, formal compliance, specifies how an external action shall behave. To be
of practical use to the application programmer, it has to provide the semantics of its non-
transactional variant whenever possible. For example, a call from within a transaction to syn-
chronize a file’s content must result in the written data to be committed to disk if the non-
transactional variant would have shown this behavior. In the case of this work, the relevant
standard for formal compliance is posix, the Portable Operating System Interface [Ope08]. It
defines the standard C interface and environment for modern variants of Unix and similar oper-
ating systems.

The second aspect, common practices, describes what an application developer should do,
not merely want he or she can do. The support of common practices is equally important as
formal compliance to technical standards. Especially on Unix systems, the correctness of software
often depends on conventions, which the programmer is advised to follow. An example is the
creation of new files with content. Write operations are not atomic, but rename operations
are. Hence, the application first creates a temporary file and fills it with data. Afterwards the
temporary is renamed to the final location. Since the rename operation is atomic, this allows for
the instantaneous generation of files within the file system; even in the presence of concurrent
writers that create files with the same final name. Many practices for programming in Unix and
Linux environments are discussed in [Dre09, Whe03]. This includes dynamic memory allocation,
string handling, file-system interaction, and others.

Extensibility. Extensibility refers to the ease of adding new features. The possibility to easily
introduce new external actions is important for supporting future versions of the posix standard,
or a new library’s data structures. Extensibility allows transactions to keep up with critical
sections in terms of versatility.
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Assume an application uses some XML parser library. It should be possible for the program-
mer to integrate the library with the transactional memory system to allow for transaction-safe
parsing and modification of XML trees without having to rewrite everything. Extensibility is
also important for optimizing towards a specific problem. An application might have a very
specific behavior during file I/O. If this is covered badly by existing strategies for concurrent I/O
the programmer might want to implement a new strategy. This overlaps with the next point.

Performance. Performance is almost an imperative for system software. A software has high
performance if its response time is minimal and its throughput is maximal. Response time is the
time span between issuing a transaction and its successful completion; throughput is the number
of successfully processed transactions per time unit [WV01]. In the case of transactional memory,
performance can be optimized by using available processor cores as efficient as possible. Having
external actions that allow for concurrent execution is therefore a plus.

1.6 Contribution

This work contributes a framework for using external actions from within transactions. The
framework’s design allows for the support of arbitrary resources and operations, at a fine-grained
level of concurrency control. Previous work, which is discussed in Chapter 2, only supported
resources with specific properties, like in the case of transactional boosting; or did only allow for
a rather coarse-grained concurrency control, like xCalls. To meet the presented requirements the
framework uses a hybrid approach for handling external actions. It either tries to defer actions or
provides a compensation action for actions that have one. In cases where no compensation action
is available or the semantics are unclear, the framework allows for the switch of a transaction to
an irrevocable mode. To handle errors that happen at commit time, the presented work includes
a simple mechanism to support their detection and handling.

Together with the design, an implementation is provided that is suitable for real software and
features all important design aspects.

A set of components, which implement support for important parts of the posix system inter-
face, is provided in addition to the basic framework. For each component a detailed description
of the related resources and functions is given, together with a discussion of the possible problems
of their transactional usage. Previous work only presented few information on supporting posix
compatibility and interaction of transactional and non-transactional processes in the system.
The components include memory management, file-descriptor I/O, file-system support, math,
and string and memory functions.

1.7 Overview

The diploma thesis is organized as follows. Chapter 2 summarizes previous work on the topic of
software transactional memory and external actions. Additionally, it points to relevant standards
and software on which the work is based on. The framework’s design is discussed in Chapter
3 and an implementation is presented in Chapters 4 and 5. Chapter 6 evaluates design and
implementation with respect to the discussed requirements. Some ideas for future work on the
topic are given in Chapter 7. The work finishes with a conclusion in Chapter 8 and a list of
supported functions of the C standard library in Appendix A.
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2 Related Work

This chapter provides an overview of research that is closely related to the use of external actions
in transactional memory systems. It starts by introducing basic texts on the topic, and afterwards
presents previous research on the support of external actions. At the end, the chapter gives some
pointers to related standards and software.

Fundamentals

Transactional memory has its roots in the fields of concurrent programming and database re-
search. An overview of concurrent programming can be found in [HS08] by Herlihy and Shavit.
Basic information about database and serialization theory can be found in [BHG87] by Bernstein,
Hadzilacos, and Goodman; and [WV01] by Weikum and Vossen. Transactional actions were first
classified by Gray in [Gra81] and later in [GR93] by Gray and Reuter.

The paper that originated software transactional memory is [ST95] by Shavit and Touitou.
Therein the authors describe a simple word-based transactional memory system. This early
implementation is quite limited and does especially not contain facilities to execute external
actions.

Exceptions and side-effects in atomic blocks

In [Har04], Harris presents a Java-based software transactional memory system that supports a
simple mechanism for using I/O in transactions.

To support transactions, the used Java Virtual Machine implements atomic blocks, which
execute with transactional semantics. The Java VM also provides an interface for an I/O library
to query if it is running in an atomic block. In this case it can register callback functions for
applying and undoing any updates to the non-transactional external state. During commit and
abort either of these callbacks is executed by the transactional memory system. The paper makes
the example of an I/O library that buffers all output. In the case of a commit of the atomic block,
the buffered updates are flushed to the file; in the case of an abort, the updates are discarded.

External action support is implemented by the use of contexts: Java objects on which external
actions execute. Context can be nested: an atomic block, which is itself a context, can contain
several subcontexts. Each context implements two-phase locking.

A context can query the validity of its subcontexts; and, depending on the result, applies the
contained external actions during the commit or undoes them. The apply operation is intended
to merge the state of a subcontext into the state of the containing context.

The work at hand does not support nesting, but uses similar concepts for handling external
action as the discussed paper. Any external actions can be deferred or compensated. The
presented mechanism is generic enough to allow for the support of various different actions.
What seems missing in Harris’ approach is irrevocability, so non-deferable, non-compensatable
actions might not be supported. Another difference is that even though an atomic block can
contain several distinct contexts there is no history for the complete transaction. However, it
might be possible to build this by implementing the history as a context of its own, and running
each external actions as a subcontext of the history.
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Unrestricted transactional memory: supporting I/O and system calls within transactions

One approach to using system calls and external actions is presented by Blundell, Lewis, and
Martin[BLM06b]. The authors built a hardware-based transactional memory system that sup-
ports system calls via irrevocability.

The transactional memory system distinguishes between a restricted and an unrestricted mode
of execution. A restricted transaction is highly concurrent, but limited by the constraints of the
underlying hardware. It is also unable to perform system calls. An unrestricted transaction does
not offer high concurrency, but can execute transactions of an arbitrary length and may contain
system calls.

All transactions start in the limited, but highly concurrent, restricted mode. If a transaction
exceeds this mode’s limitations, it is switched to the unrestricted mode, where it is not bound
to any limitations. Only one transaction can run unrestricted. The candidate transaction is
aborted if there is already another transaction running unrestricted.

Two implementations are presented: a non-optimized and an optimized one. In the non-
optimized implementation, once a transaction is running unrestricted, all restricted transactions
are stalled. In the optimized implementation, restricted transactions are allowed to run concur-
rently with the restricted one. Restricted transactions are irrevocable: If a conflict between the
restricted transaction and an unrestricted transaction occurs, the restricted transaction always
wins.

The support for external actions that is presented in this paper is still quite limited. Especially
the all-or-nothing strategy seems to limit high concurrency in the case of many transactions. The
works at hand uses an approach where multiple transactions can execute system calls concur-
rently. It only switches a transaction to irrevocability if it executes an action that cannot be
revoked.

An analysis of I/O and syscalls in critical sections and their implications for transactional
memory

Baugh and Zilles [BZ07] present a detailed analysis of two widely used applications regarding
their use of system calls and I/O within critical sections and the impact for transactional memory.
These applications are MySQL, a multi-threaded database, and Firefox, a popular web browser.
Both contain a non-trivial amount of system calls within their critical sections.

The authors first adapt the taxonomy by Gray and Reuter [GR93] to classify actions into
(1) protected, (2) unprotected, and (3) real actions. Protected actions can be compensated com-
pletely by the transactional memory system, unprotected actions need some external compensa-
tion action, and real actions do not have a well-defined compensation action at all. Furthermore,
the authors classify the strategies for handling actions as to (i) forbid them completely, (ii) defer
them, (iii) go non-speculative, or (iv) compensate them. Refer to Section 1.4 for an introduction
of these point together with some examples.

The authors analyzed the frequency in which actions of each class appear in critical sections.
They found that most of the calls fall in one of the two first categories, protected or unprotected
actions, and can therefore be compensated. With less than 10 percent, only a small number
where real actions. An investigation of the distribution of system calls within the critical sections
revealed that less then one percent of the critical sections actually execute system calls.

On the other hand, those critical sections that do tend to be very long in terms of duration.
This makes it likely that transactions conflict with each other. Also, system calls tend to be called
throughout the code and their results are further consumed within the critical section. Deferral
is therefore often not an option. There is also a lot of overlapping among transactions, so going
non-speculative, which is needed for some calls, results in a substantial loss of concurrency.
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The results of Baugh and Zilles indicate that support for external actions in transactional
code is at least worth trying. Only few critical sections, respective transactions, need to be
considered. Also, only posix calls are relevant for most applications, memory-mapped I/O and
port I/O were not used. Additionally, most of the calls either need no special handling or can
be compensated. Then again, the results also yield some serious problems for the concurrency
within applications.

In contrast to the work at hand, Baugh and Zilles only analyze and discuss the impact of system
calls on transactions. They do not provide a working solution to the problem. The work at hand
reuses the taxonomy; protected, unprotected and real actions; of Baugh and Zilles’ paper to
classify existing functions of the posix standard. It takes the presented approaches for handling
external actions and applies them to the posix functions. It also discusses common functions and
practices in more detail and identifies possible problems when using them in transactional code.
In addition, the work at hand provides a complete design and implementation for supporting
actions in transactional code.

Transactional boosting: a methodology for highly-concurrent transactional objects

Herlihy and Koskinen describe transactional boosting [HK08], a methodology for creating trans-
actional objects from non-transactional, but linearizable objects.

Objects are treated as black boxes with an abstract state and a set of methods, which modify
this state. Transactional objects are build by wrapping these non-transactional objects. Every
transactional object provides synchronization and recovery.

Synchronization allows the detection of conflicts among methods calls of distinct transactions.
Two methods do conflict if the result of their execution depends on the order of their invocation;
the methods do not commute.

Each method of a transactional object has an associated abstract lock, which handles synchro-
nization. Before a transaction calls a method it has to acquire the method’s abstract lock. If
any other transaction holds the abstract lock of a conflicting method, the acquiring transaction
is delayed, and eventually aborted if it fails to acquire the lock in time.

Abstract locks provide multi-level concurrency control for the underlying object: the successful
acquisition of an abstract lock is based on the method’s semantics. This makes it possible
to implement concurrency control beyond low-level read-write conflicts. The paper gives the
example of two transactions adding distinct elements to a set. These operations do not have
any intrinsic conflicts, yet they generate conflicts when reduced to read-write operations on the
memory.

Recovery allows to roll back speculative updates to an object. In order to achieve this, each
method m needs an inverse method m’ that compensates its effects. Each transaction contains
a log of inverses. Whenever a transaction executes a method call, the inverse is appended to the
log. If the transaction has to abort it walks backwards through its log and calls each inverse
method.

Transactional boosting allows for the use of many classes of objects in transactions, especially
collection data structures, such as lists, sets, or arrays. Its use is limited to objects where some
abstract semantics and commutative methods can be identified. Also, for each method an inverse
method has to be available, which limits its applicability for system calls.

When comparing transactional boosting to the work at hand, both use multi-level concurrency
control and a history to store executed actions. Transactional boosting seems less abstract in
its concepts and less complex to implement. This makes it adequate for the support of data
structures, such as the already mentioned collections, in transactional code.
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On the other hand, the lower complexity hinders the support of arbitrary external actions
substantially. Transactional boosting requires every non-transactional method to have an inverse
method, so that it can be compensated in the case of an abort. Many external actions do not
have an inverse, but can only be supported by deferral or irrevocability. An example is a write
operation on a fifo, which cannot be undone. In contrast to transactional boosting, the work
at hand fully supports deferral and irrevocability; which makes it more complex, but suitable for
arbitrary actions.

xCalls: safe I/O in memory transactions

A paper very similar to the work at hand is [VTG+09] by Volos, Tack, Goyal, Swift, and Welc.
It presents xCalls: a programming interface for transactional support of common system calls,
such as file-descriptor I/O, inter-process communication, and threading.

xCalls uses a combination of deferral, compensation, and irrevocability to execute system calls
from within transactions. In a study of Linux system calls, the authors found that of 284 calls
only 33 need irrevocability, the others can be deferred, compensated, or need no special handling
at all. For controlling concurrency on the system calls, the software internally uses sentinels:
revocable locks that protect kernel resources from conflicting accesses. It implements a two-phase
locking protocol for the acquisition and release of sentinels. All sentinels are managed centrally
to prevent deadlocks.

xCalls provides a variant of the posix programming interface. The programmer is responsible
for using these functions instead of the actual posix variants. On invocation, each xCalls oper-
ation first acquires the required sentinels. Afterwards it either defers the operation, registers a
compensation action, or makes the transaction irrevocable.

A simple mechanism for error detection is provided by xCalls. All non-deferred functions
return errors within the transaction. All deferred functions provide an additional argument that
returns the error state of the call. When the function is finally executed during commit and
an error occurs, the error-state parameter is set according to the result of the function. After
the transaction finished, the programmer can check the error-state variables to see whether the
external calls succeeded. xCalls also allows the programmer to set several internal parameters
regarding error handling, such as whether the system should retry any failed deferred call.

xCalls provides several common system interfaces, such as file I/O and file-system functions;
socket and fifo I/O; and threading support.

In the evaluation, the authors first converted the critical sections of three common applica-
tion to use transactions with xCalls instead. These applications are Berkeley DB, a database;
BIND, a server for the domain name system; and XMMS, a media player. The conversion was
straightforward and no major problems are reported.

Some performance measurements were done with micro-benchmarks and the converted appli-
cations. The results show that transactional I/O can be faster than non-transactional I/O with
coarse-grained locking, even though there is a considerable overhead by the use of transactional
memory.

When compared with the work at hand, xCalls is very similar: both share the principle ways
of handling external actions by deferral or compensation; both provide some facility for handling
commit-time errors, and both are contained in user space.

xCalls mostly differs in the lower elaborateness of the presented solution. It works at the level
of system calls. The sentinels provide simple lock-based concurrency control on so-called kernel
objects, such as file descriptors.1 Acquiring a sentinel locks out other, concurrent transactions
from using the protected resource.

1The paper incorrectly speaks of file descriptors as kernel objects.
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Protecting access at the level of system calls possibly eases the conversion of low-level critical
sections to transactions, because of the low amount of necessary wrapper code. Other functions
or complex constraints for the consistency of resources seem hard to be supportable this way.
Maybe the sentinel approach is flexible enough to handle them as well, but this is not obvious.
The work at hand supports fine-grained, object-level concurrency control and arbitrary functions.
Adding new facilities, is likely more work for the programmer than the implementation of a simple
wrapper with a sentinel; but allows for concurrent transactions on the same resource, and the
implementation of different strategies for protecting each resource.

Another difference is the handling of commit-time errors. xCalls only allows to check for errors
after the transaction has finished. With the framework presented in work at hand, a programmer
can register callback functions for error handling, and thereby actively influence the treatment
of errors during the commit.

Also, it seems that the way in which xCalls handles certain operations can lead to deadlocks or
inconsistencies. For example, sentinels protect individual file descriptors. If two file descriptors
refer to the same file buffer, distinct transactions can concurrently write to the buffer without
synchronization. The xCalls paper does not address such problems.

Related standards and software

The framework’s implementation is build upon the ISO C standard [ISO04], the posix standard
[Ope08], and the GNU C Library [GNU]. Information about common programming practices on
Unix systems is given in [Dre09] and [Whe03].

A description of TinySTM and Tanger, the underlying transactional-memory software, is found
in [FFR08] and [FFM+07]. TinySTM is a word-based software transactional memory system
written in C++. Tanger is a transformation pass for the llvm compiler infrastructure [LLV]
that allows the comfortable use of transactions in C applications.
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3 Design

This chapter describes the basic concepts of transactional execution of external actions and the
framework’s general design. It starts by repeating the requirements for the design, then discusses
how resources and operations are abstracted in a transaction-safe fashion, how external actions
are performed in general, and finally how to handle errors during a transaction’s commit.

3.1 Requirements

In Chapter 1 the requirements for the framework’s design were defined as

• correctness,

• standards compliance,

• extensibility, and

• performance.

They are repeated here briefly. Correctness is defined by atomicity, consistency, and isolation.
Standards compliance requests that an operation executed within a transaction should have the
same semantics as its non-transactional counterpart. Extensibility refers to the ease of supporting
new features. Finally, performance minimizes a transaction’s response time. An evaluation of
the framework with regard to these requirements is presented in Chapter 6.

Before introducing the design it is important to discuss isolation in more detail, as it defines
how transactions correctly interact with each other, with non-transactional code in the same
process, and with the rest of the system.

Isolation among transactions

Serializability has been chosen as the correctness criteria for isolating concurrent transactions that
access shared resources within the same process. The execution of a set of concurrent transaction
is modeled by a history H. H is a partial order of operations executed by the transactions. H is
serializable if it is equivalent to a serial history H’: a history of the serial execution of the same
set of transactions [BHG87].

The equivalence between H and H’ can be described in several ways. The two common ways
are view equivalence and conflict equivalence. H is then called view serializable, respectively
conflict serializable.

A history H is view serializable [Yan84] if all read operations of all transactions in H observe
the same values of data items as in a serial history H’. The problem of determining view
serializability is NP-complete, so it is not feasible for real use.

Conflict serializability is more useful in practice. A history H is conflict serializable if there
exists a serial history H’ with the same order of conflicting operations [BHG87]. This is a special
case of the more general view serializability. Conflict serializability can be guaranteed easily by
serializing transactions with respect to detected conflicts.

Given the computational complexity of view serializability and the relative ease of implement-
ing conflict serializability, the framework uses conflict serializability for its components.
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Isolation with non-transactional code

Isolation also defines how the effects of a transaction interfere with concurrent non-transactional
code in the same process. For transactional memory there are two principle choices: strong and
weak isolation [BLM05].1

Strong isolation automatically converts all operations outside of a transaction into individual
transactional operations [LK08]. Each non-transactional operation runs irrevocable and serialized
with respect to concurrent transactions or operations.2 So either a complete transaction or a
single, non-transactional operation is executed. While this seems practical at first, it is rather
useless for external actions. Assume non-transactional I/O code that (1) seeks to a specific offset
in a file, and (2) reads at this offset. Obviously the programmer’s intent is to execute these two
statements atomically. But as both are independent, a transaction can commit an update to the
file offset between their execution. In this case the read occurs at the newly committed offset
instead of the one intended by the programmer.

The problem is that the program executed a set of stateful calls, lseek and read in this case,
and depends on the assumption that this state does change in between. The only solution to
guarantee this is to convert the non-transactional code to transactional one. Strong isolation
does not provide any benefits here.

With weak isolation, a conflicting operation executed outside of a transaction may not follow
the protocols of the transactional memory system [LK08]. Therefore, when using weak isolation,
transactional and non-transactional code may not use the same resource concurrently. The
application programmer is responsible for ensuring that this constraint holds. This is done by
converting the non-transactional code to transactional one, or organizing the program in such
a way that the non-transactional code never executes concurrently with the transactional one.
When changing between transactional and non-transactional code, there has to be a period of
quiescence: a period without pending method calls for the resource.

In any correct, non-transactional program, access to shared resources is either executed in non-
concurrent parts of the code, or protected by the use of critical sections or lock-free algorithms.
As reported in [VTG+09], the transformation of such programs to weakly-isolated, transactional
code is straightforward. In most cases the programmer only has to replace the critical sections
and lock-free algorithms with transactions.

There exist some odd cases where the transformation from non-transactional to transactional
code is not easily possible [BLM06a]. This can happen if non-transactional code needs to publicize
its state to the outside; such as concurrently running code or external processes. If necessary
and possible, a transaction can allow such behavior by violating the isolation rules. An example
are consumer-producer scenarios, where a transaction might need to publicize an intermediate
result. A counterexample is a file in write-only mode. To roll back writes to the file it is necessary
to first read its previous content, which is not possible.

As an additional constraint, any asynchronous function calls are explicitly excluded here, as
they might break isolation among transactional and non-transactional code. The most prevalent
example are Unix signals. A signal is a mechanism by which a process or thread may be notified
of, or affected by, an event occurring in the system. Examples of such events include hardware
exceptions and specific actions by processes. The term signal is also used to refer to the event
itself [Ope08]. For example, an alarm signal that was arranged in non-transactional code might
be delivered while the thread is running transactional code. Under the assumption it executes
in a non-transactional environment, the signal-handler function easily breaks the transaction.

1The cited paper uses the term atomicity instead of isolation.
2The original definition of strong isolation, given in [BLM05], does not require serializability, but only safe access

to values shared with concurrent transactions.
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The rest of this work uses weak isolation among transactional and non-transactional code
blocks when accessing process-local resources. In practice, this is almost equally useful as strong
isolation, but easier to implement. The application programmer has to ensure that transactional
and non-transactional code does not overlap. Asynchronous function calls are prohibited.

The framework does not attempt to isolate transactions when accessing shared resources of the
system. This seems preferable for external actions, as it allows for the support of inter-process
communication. Also, such a facility needs kernel support for implementation.

3.2 Building Blocks

This section introduces the basic concepts on which the framework’s design is build: domains,
actions, a transaction-local history, and a simple component architecture. Domains and ac-
tions have also been described in the (unpublished) paper [RWZ09] by Riegel, Wamhoff, and
Zimmermann.

To give you an intuitive notion of these concepts, a common word-based transactional memory
could be represented like this: the main memory is a component. Each memory cell is an
individual domain. Every domain has two associated actions: read and write. But actions are
not strictly methods of domains as each action can work on more than one domain, such as
writes to several memory cells at once. The executed read and writes form the transaction’s
local history; which is the analogue to the read set and write set in a transactional memory
system.

3.2.1 Domains

Domains are a concept for representing shared external resources, such as file descriptors or the
system’s memory allocator, in a generalized and abstract fashion. Each domain provides two
properties for its associated resource. These are

• information hiding, and

• independent consistency constraints.

The property of information hiding allows the usage of a resource without the need to be
aware of the details of its underlying implementation, or its state. The domain of a resource
encapsulates the resource and provides interfaces to interaction with it. The transaction then
merely interacts with the domain, but not directly with the domain’s resource. Domains can use
each others resources by calling their respective interfaces; just like transactional code does.

For each domain in the system there is a global state and a transaction-local state. The global
state reflects the real state of the underlying resource and contains data structures for doing
concurrency control on the resource. For example, a domain that represents an open file might
contain the current file offset and a set of locks for serializing access to the file.

The transaction-local state represents the updates of a single, uncommitted transaction to the
domain. In the case of the open file, this might be a set of write operations, a new file offset,
and a set of domain locks held by the transaction.

Independent consistency constraints for each domain allow for the usage of several domains
within a transaction without interference among unrelated domains. The consistency constraints
of one domain do not affect the consistency constraints of another one. Therefore, each can be
treated individually and each can be provided in a fashion best fitting the application’s needs.
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For example, an open file might allow for the concurrent reading and writing of its content.
The transactional memory system thereby detects conflicts for distinct regions within the file.
Another domain might represent a fifo, whose consistency constraints only allow for one reader
at a time.

Domains support this by allowing for the implementation of object-level concurrency control
for its resources. Concurrency control is the activity of coordinating the actions of processes
that operate in parallel, access shared data, and therefore potentially interfere with each other
[BHG87]. Object-level concurrency control provides concurrency control on abstract objects;
domains in this case. It can be expressed in terms of page-level concurrency control, which
operates on individual read and write operation on the storage back-end. A detailed presentation
on both can be found in [WV01].

The notions of object-level and page-level concurrency control allow for a formal definition of
domains. The page-level consists of a (finite) set D of data items, so-called pages:

D = {x, y, z, ...}

Pages are indivisible and do not overlap. An example of a page is a byte in a file. Each page
can possibly be read or written. A domain (1) Domi is defined as a set of pages. To guarantee the
properties of information hiding and independent consistency constraints (2) distinct domains
may not overlap. Formally:

1. Domi ⊆ D, and

2. if i 6= j, then Domi ∩Domj = ∅.

An example of a domain is a file buffer that contains a number of bytes. A notable detail is
the role of the transactional memory. In practice, it is handled separately by the transactional
memory system; but conceptually it can be seen as just another domain in the system, or a set
of memory cells where each cell is represented by an individual domain.

3.2.2 Actions

The primary way of interacting with domains are actions. An action is a call to a set of external
resources that is invoked from within a transaction.

Action classes

Following Baugh and Zilles [BZ07], actions are to be classified into

• protected actions,

• unprotected actions, and

• real actions.

Protected actions. Protected actions only update the state of the thread’s processor registers
or the main memory. Thus, they can be compensated completely by the transactional memory
system. Protected actions can further be classified into stateless and stateful actions.

Stateless actions do not use resources besides the processor and the function call’s frame on
the stack. They do not need any special handling at all. For example, most of the C standard
library’s math functions fall in this category.
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Stateful actions possibly access memory that is shared with other transactions in the system,
typically via pointer arguments or global variables. The affected memory regions have to be
announced to the transactional memory system, which then detects and resolves any conflicting
accesses to these regions automatically. Examples of stateful actions are the string and memory
functions in the C standard library.

Unprotected actions. Unprotected actions have the possibility to update some external state
and can therefore not be compensated by traditional transactional memory systems. For exam-
ple; memory allocation, or input and output operations on files fall in this category. To allow
unprotected actions within a transaction, either (i) the transaction has be become irrevocable,
(ii) the action has to be deferred into the transaction’s commit phase, or (iii) the programmer
has to provide a special compensation action, which is called during the transaction’s abort.

Unprotected actions operate on domains other than main memory. The domain provides the
necessary abstraction from the resource to allow for deferral of compensation of the action if
possible.

Concurrent, unprotected actions working on the same domain have to be isolated from each
other and the non-transactional code of the system. The proposed solution is weak isolation
among participants. The application programmer is responsible to ensure that both do not
overlap. Section 3.1 discussed this in further detail.

Real actions. Real actions can neither be deferred nor compensated, as they typically update
some system-wide state. For example, a call to fork can not be deferred because the transaction’s
success might depend on the child process’ existence. The call can also not be compensated, as
the forked child process is not under the control of the transactional memory system. Simply
killing the child in the case of an abort is not an option as this might lead to inconsistent
resources, such as incompletely written files. Real actions can therefore only be supported in
a transactional fashion with the cooperation of all participating processes and the operating
system. Today’s common operating systems do not provide this facility, so the only strategy to
reliably support real actions is by making the calling transaction irrevocable.

Transactional execution

Typically each action encapsulates one non-transactional function. For example, there might be
actions to read and write the content of a file domain. To support transactional execution, each
action provides three methods for its associated function. These methods are:

• execute,

• apply, and

• undo.

These methods allow for the implementation of the previously proposed solutions for han-
dling external actions: deferring or compensating an external action, or making the transaction
irrevocable. The process of running an action from within a transaction is divided into two
phases.

1. Invoking an action from within a transaction results in a call to the action’s execute method.
Its purpose is to enable the transaction to handle the action. This might include setting
up some internal data structures, and preparing the action’s deferral or compensation. It
can also make the transaction irrevocable if necessary.
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Figure 3.1: The relationship among domains and actions. Each action works on one or more
domains, and each domain supports one or more actions.

2. a) The action’s apply method is called during the commit phase of a succeeded transac-
tion. It finishes the processing of the request by making the action’s effects externally
visible.

b) The action’s undo method is called during the abort phase of a failed transaction.
This allows the action to cleanup occupied resources and revoke any externally visible
effects.

There is an m:n relationship among domains and actions. Domains can have more than one
action3 and actions might depend on the state of more than one domain.4 Figure 3.1 illustrates
this. The nature of a domain’s actions depends on the type of resource that is represented by the
domain. The concrete activity of each action’s methods depends on the nature of the action, the
domains’ strategy for concurrency control, and possibly other factors, such as some extra options
set by the application programmer. For example, when executing file transactions speculatively,
it is necessary to defer the effects of write actions to the apply phase, but if a transaction is
running irrevocably it can make write actions externally visible during the action’s execute.

Coming back to object-level concurrency control, an (1) action p that is executed on a set
of domains Dom1, ..., Domn is equivalent to a partial order of read and write operations, r[x]
and w[x], that are executed on the page-level data items x of these domains. The (2) order is
established by a relation <p among conflicting operations. Formally:

1. p[Dom1, ..., Domn] ≡ {r[x], w[x] | x ∈ Dom1 ∪ ... ∪Domn}, and

2. if r[x], w[x] ∈ p, then either r[x] <p w[x] or w[x] <p r[x].

Object-level concurrency control allows for taking an action’s semantics into account. For
example, two transactions T 1 and T 2 both execute a single write action on the same file. The
write depends on the file offset and increments its value by the amount of written bytes. This is
done implicitly, such that none of the transactions T 1 and T 2 has any actual dependency on that
value. With object-level concurrency control it is possible to model the consistency constraints
of the domain in such a way that both transactions are in a consistent state as long as they do
not explicitly depend on the file offset; like they do after calling read. Hence, T 1 and T 2, can
commit their write action without conflicting. With concurrency control at the page level, such
optimization cannot be provided.

3A domain without actions is useless in practice.
4An action that depends on zero domains is a constant function.
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3.2.3 Transaction-local history

Each transaction contains a history that holds external actions that were executed within the
transaction. This section shows how this history is integrated with memory operations and how
external actions are ordered.

[BHG87] defines a page-level transaction Ti, such as in a word-based transactional memory
system, as a partial order with the relation <i among conflicting operations. A transaction
(1) consists of read, write, commit, and abort operations; (2) (3) its last operation is either a
commit or an abort; and (4) if a transaction contains a read and a write operation to the same
data item one precedes the other. Formally:

1. Ti ⊆ {ri[x ], wi[x ] | x is a data item} ∪ {ai, ci};

2. ai ∈ Ti, iff ci /∈ Ti;

3. if t is ci or ai, for any operation p ∈ Ti, p <i t ; and

4. if ri[x ], wi[x ] ∈ Ti, then either ri[x ] <i wi[x ] or wi[x ] <i ri[x ].

The terms ri[x ] and wi[x ] denote read and write operations of Ti on a data item x; ci and
ai denote commit and abort operations; p is a memory operation; and t is a commit or abort
operation. To integrate external actions, this definition is extended slightly:

5. If p and q are conflicting operations and p, q ∈ Ti, then either p <i q or q <i p; and

6. if p[x ] is ri[x ] or wi[x ], and p[x ], alloc[x ], free[x ] ∈ Ti, then alloc[x ] <i p[x ] and
p[x ] <i free[x ].

The first addition (5) generalizes the notion of conflicts from memory operations to arbitrary
operations p and q on memory or external resources. This integrates the previously defined
domains and actions.

The second addition (6) describes the relationship among memory operations and external
actions. The term p[x ] denotes a page-level operation on a memory data item x, alloc[x ] is an
external action that allocates x, and free[x ] is an external action that frees x. The external
actions update the state of the heap memory. This affects the behavior of subsequent memory
operations on the affected locations. Therefore, allocation has to be done before any access at
the affected location takes place, freeing memory has to be deferred until all access took place.
This special case is necessary because it is not obvious that operations on the memory-allocator
domain create conflicts with reads and writes on memory cells.

What is still missing is the integration of the actions’ execute, apply, and undo methods. With
the presented design, memory operations are handled separately from external actions: Memory
operations are handled by the transactional memory system, external actions are handled by the
framework. For every transaction Ti the framework adds a local history Ei. It should not be
confused with a history H. Ei is the set of external actions p that were executed within Ti and
need deferral or compensation, such as write or seek operations on a file. Other actions, such as
offset-independent read operations, do not need to be contained in Ei. Formally:

Ei = Ti ∩ {p | p is an invocation of an external action}

The transaction-local history allows to traverse conflicting external actions in the correct order.
To apply actions in the correct order, the elements in Ei have to be traversed in ascending order
with respect to <i; to undo actions the elements have to be traversed in descending order. Actions
that do not support deferral or compensation make the transaction irrevocable. In this case the
content of Ei and all further actions are applied immediately.
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3.2.4 Components

Critical sections can handle arbitrary data structures. For transactional memory to be equally
useful, a flexible way of integrating new features into existing transactional code is needed.

The framework therefore provides a simple component architecture. Each component provides
a set of related domains and actions. The component thereby acts as mediator between its
domains and actions, and a transaction’s local history. For example, it provides internal data
structures that contain the local states of each transaction’s domains and updates done by
executed actions.

To integrate components with the history Ei, the definition of Ei is slightly changed: it does not
contain actual external actions p, but generic events e that signal invocations. Each component
contains a translation function fcomp that maps the events of the component to invocations of
external actions. Formally:

Ei = Ti ∩ {e | fcomp(e) is an invocation of an external action}

Components communicate with the transaction’s local history by a set of generic interfaces.
This allows a component’s actions to insert events into the transaction’s history; and the frame-
work to validate domains, and apply or undo actions.

3.3 Framework

The previous section presented the framework’s building blocks: domains, actions, a history for
each transaction, and a simple component architecture. In this section these blocks are put
together to form the complete design, which is illustrated in Figure 3.2.

3.3.1 Outline

The base of the framework is the transactional memory system. It is hooked into the mem-
ory access of all running transactions. The transactional memory system internally checks for
conflicting memory operations among the transactions and resolves them automatically. If two
transactions conflict, one of them is aborted, or at least has to wait for the other transaction to
disappear. To integrate external actions, the transactional memory system exports an interface
to

• make it validate the consistency of the transaction’s memory and external domains, and

• make a single transaction irrevocable.

Optimistic domains have to be validated to ensure their consistency. Irrevocability is necessary
for the support of real actions: actions that can neither be deferred nor compensated.

The central part of the framework is the transaction’s local history. It is build on top of the
transactional memory system. It exposes an interface to

• make it validate the consistency of the transaction’s external domains,

• lock and unlock domains used by the transaction,

• apply all external actions that have been deferred, and

• undo all external action that need compensation.
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Figure 3.2: The design of the framework is founded on the transactional memory system. On top
resides a transaction-local history Ei of action-related events, and a set of compo-
nents. Each component provides a set of domains Dom and actions p. The transac-
tion’s application logic executes actions on the domains. The actions inject events into
the history. During the transaction or the transaction’s commit, the transactional
memory system validates the transaction’s domains. To support atomic commits,
domains are locked before the commit and unlocked afterwards. For committing ex-
ternal actions, the transactional memory system instructs the history to apply all
events’ actions, otherwise to undo them.
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The transactional memory system uses this interface during a transaction’s commit and abort
to control the external domains. Validation is necessary to guarantee consistency, and the apply
and undo methods handle external actions’ deferral and compensation. The lock and unlock
interfaces are used to implement atomic commits. It is the minimal set of functionality needed,
actual implementations might need additional interfaces, such as clean-up functions.

Components are build on top of the history. Each is registered with the history to allow the
component to insert events into the history, and the history to call functions from the component’s
exported interface. The components interface provides means to

• validate the consistency of the component’s domains that are in use by the transaction,

• lock and unlock the component’s domains,

• apply an event that was added to the history by the component, and

• undo an event that was added to the history by the component.

Again, this is a minimal set of functionality. Any implementation is likely to need more
interfaces for specialized tasks.

Each component encapsulates domains and actions. The interfaces for validation and locking
are related to domains, whereas the interfaces for applying and undoing are related to actions. So
each domain provides its component with an interface that allows for the locking and validation of
the domain. Each action provides its component with an interface that allows for the application
of the action, in case it was deferred, and an interface that allows to undo the action, in case it
needs be compensation. This follows the discussion of domains and actions in Sections 3.2.1 and
3.2.2

3.3.2 Domain validation

Validation ensures the consistency of an optimistic domain’s transaction-local state. This can
become necessary during an action’s execution, for example to check whether a read from a file
returned consistent data; or during a transaction’s commit, before applying the transaction’s
deferred action’s.

A pessimistic domain provides valid consistency once its respective data item has been first
accessed by the transaction. An optimistic domain’s transaction-local state can become incon-
sistent if another transaction updates the domain’s global state. Therefore, optimistic domains
have to be re-validated after each successive read operation. Assume two transactions T 1 and
T 2. Transaction T 1 reads two data items x and y. The read on x is executed on a domain
with optimistic concurrency control. The operation is first performed, then the consistency of
the read data is validated. Before the read on y is performed, T 2 commits an update to x and
y. This is possible for T 2, because x uses optimistic concurrency control. If T 1 now reads and
validates y only it holds data in an inconsistent state: the old value of x and the new value of
y. To prevent this from happening, T 1 reads and validates y, and afterwards validates all of its
optimistic domains, which is x in this case. Data item y could be a memory location, so read
operations within the transactional memory system use this strategy as well.

Validation is triggered from within the call of an action’s execute method, a memory read,
before becoming irrevocable, or during a transaction’s commit. It starts within the transactional
memory system. This calls the validation interface of the transaction’s history. The history con-
tains a list of components that were used from within the transaction: exactly those components
that inserted events into the history.
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For each of these components the history calls the respective validation interface and each
component calls the validation interface of those domains that have been used within the trans-
action: exactly those domains on which actions have been executed. The independent validation
of domains is possible because each domain has its own independent consistency constraints,
as defined in Section 3.2.1. Memory validation is handled completely within the transactional
memory system. If the validation fails for at least one domain, the transaction aborts.

As an example, assume a file domain that is used by several reader and writer transactions.
Each transaction contains a history of events of external actions that have been executed from
within. For validation, the history obtains the components of these events and instructs each
component to validate the domains used by the transaction. A component then instructs all
its domains to validate their transaction-local states. Pessimistic domains need no validation.
Optimistic domains have to validate all of the file’s content read by the transaction, and possibly
the file offset. This succeeds if no updates to these data items have been committed by another
transaction. It fails if any data item has been updated. The results of each domain’s validation is
returned to the transactional memory system, which decides whether the transaction can proceed
or has to abort.

3.3.3 Execution of actions

A call to an action from within a transaction invokes the action’s execute method, which prepares
the possible deferral or compensation of the action and inserts an event into the history if
necessary.

When an action is executed that can neither be deferred nor compensated, the execute method
requests irrevocability for the transaction. If this does not succeed the transaction aborts.

The execute method is also responsible for controlling concurrency and validating the con-
sistency of any retrieved values. The exact strategy is specific to the action and its domains.
Typically this means for the transaction to acquire some locks for a domain, or compare a
domain’s transaction-local timestamps to its global timestamps.

3.3.4 Commit of transactions

The design of the framework has to ensure the atomicity of a transaction’s commit and the
consistency of the committed values.

The commit starts within the transactional memory system. It first calls the lock interface of
the transaction’s history. This in turn calls the lock interface of all components that participated
in the transaction, and the components lock the transaction’s domains. The locking can be
fine-grained, to allow for the parallel commit of unrelated transactions on the same domain.
The locking signals all domains that a commit starts and is mostly necessary for domains with
optimistic concurrency control. The pessimistic domains have lock semantics by default. Locks
have to be acquired in a fixed order to prevent deadlocks. This order is established by locking
all components in a fixed order, making each component lock its domains in a fixed order, and
making each domain lock its data items in a fixed order.

After all locking is finished, the commit continues with the validation of the transaction’s
memory and external domains, as described in the previous section. If the validation fails, the
transaction releases its locks by calling the history’s unlock interface, and aborts.

If the validation has been successful the transactional memory system first commits the trans-
action’s memory-write operations. This has to be done before the commit of any external actions,
because the memory operations might work on resources that are unavailable afterwards, such
as dynamically allocated memory regions that are freed by an external action’s apply method.
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After the memory write set has been committed, the transactional memory system starts to
apply the transaction’s external actions by calling the history’s apply interface. The history
iterates over the set of events in the order of their appearance within the transaction. For each
event it calls the apply interface of the component that added the event. The component calls the
apply interface of the action that generated the event. The action’s apply method finally commits
any deferred updates to the affected domains. It is assumed that both, event and component,
store information to allow for this lookup, such that for each event the correct action’s apply
method is called. Section 4.3 discusses this in more detail. The application programmer can
assign call-back functions for handling errors that occur during applies. This is discussed in
Section 3.4.

To finish the commit, the transactional memory system calls the history’s unlock interface,
which releases any locks acquired by the transaction.

3.3.5 Abort of transactions

The consistency of a domain could not be verified if its validation fails. The affected transaction
has to abort.

The abort process starts in the transactional memory system by reversing the effects of
the transaction’s memory operations Afterwards the transactional memory system calls the
transaction-local history’s undo interface. The history iterates over the set of events in reverse
order and calls the undo interface of each event’s component. The component in turn calls the
undo interface of the action that generated the event. The action’s undo now compensates the
effects of any updates to a domain made during the action’s execution.

Locking is not necessary during an abort if no updates have been made to a domain’s global
state. If updates have been made that need to be revoked, the action’s undo methods can
internally lock individual data items while reversing the updates.

3.4 Error Handling

One major problem of transactional execution is error handling at commit time. When deferring
actions, it can happen that an error occurs within the action’s apply method. The problem is that
the action itself takes place within the transaction, but the error occurs during the transaction’s
commit. This is a difference to non-speculative execution where errors are reported immediately;
like in traditional posix systems.

Sometimes it is possible to prevent commit-time errors from happening in the first place. For
example, an action’s execute method can detect whether the supplied parameters are valid and
fail with an error code if so. Or the execute method might try to pre-allocate necessary resources,
such as disk space for write operations.

In most cases it is not possible to reliably detect errors during an action’s execution. For
example, the success of a write operation to a file cannot be guaranteed until the write actually
happens within the action’s apply method. If the apply method fails, the application has to

• be informed that an error happened, including an error description,

• be informed which invocation failed, and

• decide on how to proceed.

To inform the application that an error occurred, the framework provides a simple callback
mechanism, were the application programmer sets a callback during a transaction’s execution.
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The callback setup inserts an event into the transaction’s history. When the history is replayed
during the commit, the setup event’s apply method makes the event’s callback the current error
handler. The framework also provides a way for removing the error handler, so that it does not
handle errors of unrelated actions.

If an error occurs, the framework calls the last applied error handler with the event’s param-
eters. The parameters are implementation-specific. Section 4.5 discusses this in detail. In the
case that no error handler is set, a default strategy is applied; like exiting the process.

When the error handler is invoked, the application processes the error. It could, for example,
output an error message. When finished, it decides on how to proceed further. This decision
is passed back to the framework via the error handler’s return value. Some possible strategies
include

• exit,

• again,

• abort, or

• ignore.

In this example, returning exit simply terminates the program with a failure code. again
signals the framework to retry to apply the action. This is useful to handle temporary failures,
such as full disk drives. abort aborts the transaction, and ignore makes the framework ignore
the error and go on with the next event in the history.

As an example for error handling with this facility, assume the apply method of a deferred
write operation fails with ENOSPC, which reports that there is no space left on the disk. The
write’s apply saves the error code in some component-internal data structure, and signals the
occurrence of an error back to the history. The history calls the transaction’s currently registered
error handler. The error handler checks the supplied parameters to see which invocation failed,
and reads ENOSPC from the thread’s errno variable. To handle the error, it tries to free some
disk space by deleting obsolete files, such as temporary files or local caches. Afterwards it sets a
bit in its internal data structures to marks the invocation as failed, and returns again. When
receiving again, the framework tries again to apply the action. If this succeeds, because enough
disk space has been freed by the error handler, the history continues by applying the next event.
Otherwise, if the action’s apply fails again, the history again calls the current error handler.
During its previous run, the error handler has already marked this invocation as failed, so it
could now return ignore to ignore the error or exit to exit the process.

In the case that transactions need to handle errors that occur during aborts, a similar scheme
could be used. The programmer thereby registers functions for handling abort errors. The push
and pop operations on the error-handler stack would be contained in the respective actions’ undo
methods, so that they are invoked during an abort.

The provided way of handling commit-time errors is very flexible. It allows for the use of more
than one error handler within a transaction, or even to provide each action invocation with its
own, specialized error handling. Components can provide a specialized error handler for each
of their actions. It is also conceivable that an action’s execute method automatically registers
the action’s respective error handler. The execute method therefore inserts three events into the
history. It first adds an event to set the error handler, then it adds an event for the action itself,
and finally it adds an event to remove the error handler.

The problem with this approach to error handling is that the application developer still has
to do most of the necessary work. For ideas on how to further automatize error handling and
making it transparent to the application, refer to Section 7.3.
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4 Implementation

This chapter describes Taglibc, the Transactional GNU C library, which is the framework’s
implementation. It is a set of tools and wrappers to allow the use of external actions from within
transactions. Nested transactions are not supported.

Taglibc is completely contained in user space and no kernel changes have been made. However,
kernel support would greatly ease the implementation of user-space transactions in some cases.
A transaction could start system calls, and have the kernel handle the details of the call and
the scheduling of transactions. Additionally, kernel support could to some extend avoid the
occurrence of commit-time errors, as the kernel can often give guarantees for the success of
deferred operations. Support from the operating system also allows the isolation of concurrent
processes in the system when interacting with system-wide resources, such as the file systems. A
proposal of how kernel transactions can be supported and integrated with transactional memory
is found in [PHR+09].

The big disadvantage of a kernel-based implementation is (the absence of) portability. Sup-
porting the same set of features on a wide range of operating systems likely requires a specific
implementation for each system. A user-space solution, like presented in this chapter, can be
ported with less effort, ideally by simply recompiling for the new system.

The chapter starts by presenting the underlying transactional memory system and how it is
connected to Taglibc. Afterwards it describes Taglibc’s internal implementation, its connection
to the application, and the error handling.

4.1 Basic Setup of Transactions

The framework uses the C++ implementation of TinySTM [FFM+07], a word-based transac-
tional memory system for C applications. Tanger, a transformation pass for the intermediate
representation of the llvm C compiler [LLV], is provided together with TinySTM. It is exe-
cuted during the build process of the application where it transforms normal byte code into a
transaction-aware form. The build process is outlined by the following steps.

1. All source files are compiled to llvm byte code and linked together to form one large file.
The byte code contains function calls that signal the beginning and ending of transactions.

2. llvm runs transformation passes on the byte code, including Tanger. This replaces the
non-transactional code by transaction-aware code. When the Tanger pass has finished,
all memory references within transactions have been replaced by calls to TinySTM’s pro-
gramming interface, and some code for setting up and committing transactions has been
added.

3. Finally, the transaction-aware byte code is converted to machine code, and linked with
TinySTM as well as other external dependencies. This creates the final application.

Tanger is not strictly needed to use TinySTM, but it adds a lot of comfort. Otherwise, the
application programmer had to use TinySTM’s interface directly.
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4.2 Interaction between TinySTM and Taglibc

Taglibc is the framework’s prototype implementation. It is a set of wrappers and tools to support
external actions. Taglibc is written in C, an external code generator is implemented in Perl.

When a transaction calls its first external action, Taglibc registers itself with TinySTM. In
addition to the standard STM interface for memory operations, TinySTM exposes a few new
interfaces to allow for the integration of Taglibc. These are

• bool tanger stm is noundo(),

• bool tanger stm go noundo(),

• void tanger stm abort self(),

• bool tanger stm validate(),

• void tanger stm store mark written(offset, length),

• void tanger stm set ext calls(<callback functions>),

• void tanger stm set optcc(bool),

• bool tanger stm get optcc(),

• void tanger stm set validation mode(mode), and

• mode tanger stm get validation mode().

The function tanger stm is noundo is provided for querying the irrevocability state of a
transaction. The function tanger stm go noundo allows a transaction to request irrevocability.
If the transaction became irrevocable, the call returns success, otherwise it returns an error code.
The transaction is then responsible for cleaning up its resources and aborting itself. Aborting is
achieved by calling tanger stm abort self.

It is sometimes necessary to re-validate the consistency of domains with optimistic concur-
rency control. Data read from such a domain can hold inconsistent values when used in a
transaction. This happens if an update is committed between the time of the validation and
the actual use of the read value. An example is given in Section 3.3.2. Optimistic domains
announced their presence of to TinySTM with a call to the function tanger stm set optcc.
The function tanger stm get optcc retrieves this value. As long as no optimistic domains are
present, validation is not performed.

In the case that optimistic domains are in use, the function tanger stm set validation mode
allows to limit the amount of validation. Three modes are currently supported:

• op,

• domain, and

• full.

The value op, which is the default, signals that only the result of the current action’s operation
needs to be validated, domain signals that only the optimistic domains on which the action was
executed need to be validated, and full signals the validation of all optimistic domains. This
allows the application programmer to reduce the overhead of validation if inconsistencies can be
tolerated.
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An action, executed on optimistic domains, retrieves the current validation mode with a call
to tanger stm get validation mode. If the mode is op or domain the action instructs its
domains to validate the operation’s values or themselves; if the mode is full the action calls
tanger stm validate to instruct TinySTM to start validation of all optimistic domains that
are in use by the transaction. TinySTM then validates the transaction’s memory and instructs
Taglibc to validate its domains. This is done via function callbacks, which are described below.

During commit TinySTM always validates all domains, so even if a transaction can execute
on inconsistent values, it cannot commit any inconsistent results.

The call tanger stm store mark written originally was an internal interface of TinySTM,
but has been made public. It allows a transaction to request ownership of a region of main
memory. This is necessary for memory management.

Finally, tanger stm set ext calls allows for the connection of Taglibc with the memory
transaction. This function takes a set of hooks, which are called by TinySTM during the lifetime
of the transaction. These hooks are

• void lock(),

• void unlock(),

• bool validate(),

• void commit(),

• void abort(), and

• void finish().

All hooks are implemented as function pointers, where each transaction has its own set of
pointers.

Calls to the hooks lock and unlock enclose each transaction’s commit phase, where they allow
for the locking and unlocking of framework-internal data structures and optimistic domains.

The validate hook is called to validate the state of the domains with optimistic concurrency
control at the beginning of the commit process, after a transaction became irrevocable, or after
a read operation. It instructs Taglibc to validate the consistency of the transaction’s external
domains. Taglibc knows about the components that inserted events into the history. These
components in turn keep track of the state of their domains. The return value signals the success
or failure of the validation. Memory validation is handled by TinySTM itself.

If validation during commit is successful TinySTM calls the commit hook, which instructs
Taglibc to apply the transaction’s pending actions to its respective domains. If the validation is
not successful, TinySTM calls the abort hook, which makes Taglibc undo all pending actions.

Finally, finish is always called at the end of each transaction to clean up remaining framework-
internal data structures.

4.3 Framework-Internal Details

This section describes the core of Taglibc, which is based on the changes to TinySTM.
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4.3.1 The transaction-local history

The callback functions, used by TinySTM, are provided by Taglibc’s history. The history is
the lowest level of the software stack within Taglibc. It contains event that have been executed
by the transaction. The history is implemented as an event log that represents the history of
executed actions in the order of their execution.1

As illustrated in Figure 4.1, the log is aware of all included components. Similar to TinySTM,
it exposes a programming interface for components to interact with. The elements of the interface
are

• void log register component(index, <callback functions>),

• void log inject(component, call, cookie),

• void log push commit error handler(<callback function>), and

• void log pop commit error handler(<callback function>).

The functions log push commit error handler and log pop commit error handler, are re-
lated to commit-time error handling. They are described in Section 4.5.

The function log register component allows components to register themselves with the log.
When registering, each component selects a unique index by which Taglibc distinguishes among
individual components. At the moment, indexes are assigned statically. The register function
also receives a set of hooks, which allow any component to become part of the transaction. These
hooks are

• void lock(),

• void unlock(),

• bool validate(),

• bool apply event(events, nevents),

• bool undo event(events, nevents),

• void updatecc(),

• void clearcc(), and

• void finish()

Most of these hooks behave like their TinySTM counterparts. The hooks apply event, and
undo event allow for applying or undoing the actions of events in the log. Both functions retrieve
an array of events, so that a component that inserted several events in a row can handle them as
one. This reduces function call overhead and allows to merge events. For example, the component
for file-descriptor I/O uses this facility to merge successive write operations at consecutive offsets
in a file buffer.

1Saving the undo actions instead raises several problems with functions that have to be deferred in any case.
Assume all file writes were committed from within the action’s execute method and compensated during an
abort. Therefore, the write’s execute had to obtain and save the previous values of the written area. This is
not possible if the file had been opened write-only. Also, for readable files the extra read operation during
the execute would impose a performance overhead. Problems also occur with memory management: It is not
possible to regain a once-freed memory region during an abort.
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Figure 4.1: The interaction within Taglibc for the most important interfaces. The implemen-
tation is based on TinySTM. Each transaction’s event log contains the history of
events. It connects with TinySTM using tanger stm set ext calls. Several compo-
nents, such as file-descriptor I/O and memory allocation, are provided with Taglibc.
Each component provides a set of domains and actions: transaction-safe variants of
non-transactional resources and functions. The transaction executes actions, which
append events to the log via log inject event. Before the commit starts the op-
timistic domains are locked by TinySTM via lock. During the commit or abort
TinySTM uses the validate, apply, and undo callbacks for interacting with the
event log. The log itself uses validate, apply event, and undo event to interact with
the components. At the end of the commit the domains are unlocked via unlock.
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The hooks updatecc and clearcc are related to concurrency control. The former is called at
the end of a successful commit to update the state of the concurrency-control data structures;
the latter is called at the end of an abort for the same purpose. When registering it is also
possible to supply a pointer with component-specific data structures.

Each component is aware of the domains for which it is responsible. After it has registered itself
with the log via log register component, it can start appending events by using log inject.
The event receives as its parameters the index number of the calling component, a component-
internal index of the executed action, and a component-internal cookie value. These values are
later used to map the event to a specific invocation of an action.

4.3.2 Setup of actions, components, log, and transactional memory system

Each component interacts with the framework’s event log via the log’s exported interfaces and
the callback hooks. The code for doing this is located within the component and its actions.

When a transaction executes its first action, neither has the component been registered with the
log, nor has the log been registered with TinySTM. The action’s execute method therefore sets up
some component-specific data structures and calls the log’s interface log register component to
register its component. This in turn executes tanger stm set ext calls to register the logging
facility with TinySTM. Any further action of this component does not process this setup, but
retrieves the component’s data from the log. The first action of any other component only has
to do its component-specific setup.

Having retrieved the component’s data, the action’s execute method proceeds with its specific
purpose. Afterwards it can instruct its component to append an event to the log by calling
log inject. The event’s parameters include the component’s index, the action’s component-
intern index, and an invocation-specific cookie. Later this allows to reconstruct the necessary
information to apply or undo the action.

The lazy setup is used to minimize the overhead for transactions that do not use external
actions, or only use specific components. It also eases the integration of new components, as
there is no need to specifically announce them beforehand to the framework; at compile time or
application start-up for example.

4.3.3 The commit and abort process in detail

During a transaction’s commit phase, TinySTM first attempts to lock all of the transaction’s
external domains via the lock callback. This makes the log’s implementation call the lock
callback of all registered components, which, if necessary, start locking the domains used by
the transaction, either partially or completely. Locking prevents concurrent transactions from
accessing the domains’ fields and ensures atomic commits.

Having locked the domains, the next step is validation. Besides validating its memory locations,
TinySTM validates the external domains via the validate callback. The log’s implementation of
the validate callback validates all external domains, using each component’s validate callback.
The details of validation are specific to each component and its domains.

If the validation completes successfully, TinySTM first commits its local memory updates and
then commits the updates to the external domains. This order is important. Assume that a
transaction wrote to some area of heap memory and later released this memory by calling free.
To make free revocable it gets delayed until commit time. If the external actions were committed
first, the free’d memory would be released, and afterwards the updates to these now unavailable
memory locations would fail to be committed.
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A transaction’s external actions are applied in order of their execution. The log’s implemen-
tation of apply walks over the transaction’s set of events and calls each event’s apply event
function with the parameters supplied with the event.

Afterwards the log calls updatecc to update any data structures that are related to concurrency
control. At the end of the commit process all domains are unlocked by the unlock callbacks and
any remaining resources are cleaned up by the finish callbacks.

If a transaction has to abort, TinySTM calls the abort callback. Its implementation walks
through the history in reverse order and calls each event’s undo event callback, and afterwards
resets the concurrency-control state by calling clearcc. The transaction then starts anew.

4.3.4 Serial mode

TinySTM has been enhanced to allow one transaction to run exclusively. This becomes necessary
if a non-revocable action is executed, or if an action encounters a state where revocability cannot
be provided.

The interface tanger stm go noundo allows a transaction to request serial mode. The function
waits until all other running transactions have either committed or aborted. Also, when a
transaction has called this function no transaction can start or retry.

As soon as the transaction is running exclusively, is starts the validation and commit process
for the domains it has used so far. If the validation and commit succeeds, the transaction applies
its external actions and continues exclusively; otherwise the transaction has to undo its actions
and start anew, but stays in the serial mode.

4.3.5 Progress and contention management

Concurrent code that uses mutual exclusion is subject to deadlocks. Assume two transactions
T 1 and T 2, and two shared resources x and y. T 1 first locks x and T 2 first locks y. Afterwards
T 1 attempts to lock y and T 2 attempts to lock x. This results in both transactions blocking
each other and none is able to make progress.

The absence of deadlocks is called freedom from deadlock: If some thread attempts to acquire
the lock then some thread will succeed in acquiring the lock [HS08]. With this principle it is
guaranteed that at least one thread always makes progress.

The framework’s implementation requires its components to never block while acquiring locks.
If acquisition fails, the component should instead abort the transaction. This prevents the case
of blocked transactions waiting for each other.

It can still be the case that T 1 and T 2 both repeatedly fail to acquire one of the other
transaction’s locks after having aborted. This is called livelock. To ensure freedom from deadlocks
the framework counts the number of aborts per transaction. When a transaction reaches a certain
limit, it is executed exclusively. At this point it cannot possibly conflict with other transactions
anymore.

The implementation does not guarantee freedom from starvation. Freedom from starvation
requires that every thread that attempts to acquire the lock eventually succeeds [HS08]. This
principle ensures that every thread makes progress. In the framework, when a thread requests
to run exclusively, there could always be some other exclusive thread that is preferred.

At the moment the decision which transaction to prefer in the case of conflicts happens by
chance: the transaction that detects the conflict has to abort. Ideally it should be made by a
contention manager : a centralized component that resolves conflicts among transactions. It can
use an optimal strategy to select the best transaction to win the conflict.
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Listing 4.1: Declaration of a wrapper around write

1 stat ic s s i z e t
2 t ange r wrappe r tange r s tm s td wr i t e (
3 int f i l d e s ,
4 const void ∗buf ,
5 s i z e t nbyte ) a t t r i b u t e ( ( weakref ( ” wr i t e ” ) ) ) ;

Additionally the contention manager can take various parameters into account; such as trans-
action length, size of the read and write sets, or the number of previous aborts. The framework
does not contain a contention manager, but some ideas are presented in Section 7.1.3.

4.4 Connecting Framework and Application

Having described the changes to TinySTM and the internal structure of Taglibc, the final missing
piece is the execution of actions from within transactions. For this to work, non-transactional
function calls have to be redirected to their framework-internal execute function, and each call’s
arguments need to be made transaction-safe. For example, C strings that are passed as arguments
need to be announced to the transactional memory system, so that conflicts on them are detected.
The call stack is illustrated in Figure 4.2.

The framework’s components provide a set of entry points to the application. Each entry
point provides an interface of the posix specification. An application can make use of an entry
point by including the respective header files. The framework provides a code generator, which
automatically creates the public headers and entry points from some simple declarations. It
covers most of the posix interfaces that the framework supports. The interfaces that are not
covered by the code generator have been added manually. They often have unusual semantics,
which are not easy or worth to formalize for automatic generation. An example is the function
posix memalign, which returns the address of a pointer via a pointer argument.

4.4.1 Redirection of function calls

The process of linking entry points into an application is a combination of different techniques.
A declaration of an entry point uses GCC’s function attribute weakref, which makes a decla-
ration a weak reference to some target function. When using the non-transactional function’s
name as target, Tanger redirects all calls from the non-transactional interface to the framework-
internal entry point during the byte-code transformation. As an example, the declaration of the
framework’s entry point for write is shown in Listing 4.1. If this declaration is included in the
program’s source code, a transaction that calls write actually calls tanger stm std write.

Declarations need to have one of two prefixes. The prefix tanger wrapper means that the
declaration is a wrapper around a framework-internal function; the prefix tanger wrapperpure
means that the external action can be used directly. The latter is especially useful for stateless,
protected actions, which can be called directly.

When the byte-code is linked during the last step of the build process, the framework is linked
statically into the application. In this program, when a non-transactional function is called from
within a transaction, the entry point and the action’s execute method are invoked.

Tanger only works on transactional code blocks. Calls from non-transactional code still work
as before: any call is linked to its original posix interface.
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Figure 4.2: A call of an execute method. The entry point is called from within a transaction.
It converts the arguments to transaction-safe values before it passes them on to the
execute method. On return, it converts the results to transaction-safe values as well.
The distinction between entry point and execute method allows for the automatic
generation of the conversion code.

4.4.2 Transaction-safe arguments

An entry point’s implementation has to check the arguments for validity, regarding concurrent
access by other transactions. It is the entry point’s responsibility to make TinySTM aware of
the access and copy the referenced memory’s content to a transaction-local storage. TinySTM
provides the necessary interfaces.

The entry point then hands over control flow to an action-specific execute method. Afterwards
it announces any pointers that have been returned by this function to TinySTM before it returns
to the transaction. For example, a call to write receives a pointer to a memory buffer, which
has to be written in a transaction-safe fashion.

For saving transaction-safe copies of supplied buffers it is necessary to dynamically allocate
memory. If the buffer is not larger than one kilobyte, the code generator automatically applies
an optimization where it allocates temporary memory on the thread’s stack instead of the heap.

4.5 Error Handling

Commit-time errors are handled by callback functions, which the programmer assigns during
the transaction’s execution. When an error occurs in an apply method, the apply has to save
the error state and return an error indicator to the framework. The framework then calls the
currently active error-handler callback.
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Listing 4.2: Registering an error handler
1 stat ic enum s tm e r r o r a c t i on
2 e r r o r hand l e r ( int component , int c a l l , int cook i e )
3 {
4 /∗ Exi t on commit error ∗/
5 return STM ERR EXIT;
6 }

8 stat ic void
9 do t r an sa c t i on (void )

10 {
11 tange r beg in ( ) ;

13 /∗ Push error hand ler ∗/
14 t ange r s tm push e r r o r hand l e r ( e r r o r hand l e r ) ;

16 /∗ Some func t i on c a l l s here
17 ∗ . . .
18 ∗/

20 /∗ Pop error hand ler ∗/
21 t ange r s tm pop e r ro r hand l e r ( ) ;

23 tanger commit ( ) ;
24 }

A callback’s arguments are the parameters of the event that generated the error. These consists
of the component number, a component-internal call number, and an invocation-specific cookie.
These are the values that have been passed when the respective event was injected into the
history. They allow the component to retrieve information about the failed invocation. The
return value of the callback determines the further processing: ignore the error, try again, or
exit the process.

Internally, the error-handling facility is implemented as a stack of function pointers. The
public interface tanger stm push error handler allows the application programmer to push a
function pointer onto the stack, the interface tanger stm pop error handler allows the removal
of the top-most function pointer. When the application developer executes such a function, it
either appends a push or a pop event to the transaction’s log. During commit these actions
are applied: the specified function pointer is pushed onto the stack or the top-most pointer is
removed from the stack. When an error occurs during commit, the current top of the stack is
used as the error handler.

Listing 4.2 shows an example usage of the interface. The transaction is implemented in
do transaction. It executes tanger stm push error handler for making the function named
error handler the commit-time error handler. It then executes some function calls and exe-
cutes tanger stm push error handler to pop error handler again. If the apply method of a
function call fails, the framework calls error handler with the parameters of the event whose
function call caused the error. This allows the application to search information about the re-
spective invocation and handle the error. This is done before the transaction is aborted, so it is
still possible to continue the commit if the error could be resolved.
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With the stack-based design, it is possible to support nested error handlers: functions called
from within a transaction can push and pop their own error handlers onto the stack without
interfering with the callers error handling.

The error-handler function is not transaction-safe. Thus, it should not attempt to access any
shared resources, which might be in use concurrently by transactional code. It should rather use
the interfaces provided by components or domains to obtain the transaction’s state. Although
this is not implemented at the moment, each component can provide a set of standard error
handlers for its actions, or provide the application with a way to query extra information about
the failed action.
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5 Components

The previous chapters only discussed the core of Taglibc. The framework also includes compo-
nents that provide functionality of the posix standard in a transaction-safe fashion. This chapter
presents the domains and actions of the available components and covers important details of
their implementation.

5.1 Memory Allocation

The memory-allocation component provides transaction-safe allocation of heap memory. Its only
domain is the system’s memory allocator. A basic version of transactional memory allocation
has already been provided by a combination of TinySTM and Tanger. Moving this upwards in
the software stack leads to a cleaner and more generic solution.

5.1.1 Actions

The basic primitives are posix memalign and free. All other actions, namely malloc, realloc,
or calloc, are just variants of these primitives and build upon them.

Posix memalign. A call to posix memalign allocates memory on the heap. It is executed
immediately within the transaction. The address of the allocated memory is stored in the com-
ponent for use with the log’s entry. The undo method of posix memalign frees this memory, the
apply method does nothing. In contrast to normal malloc, posix memalign allows to set the
alignment of the newly allocated memory. When emulating malloc, the alignment can be chosen
within some boundaries. This allows for an alignment that fits the number of bytes covered by
the transactional memory system’s internal locks, and thereby minimizes the amount of false
sharing of memory regions among independent transactions.

Free. Allocated heap memory is returned to the system by calling free. The function free
cannot be executed immediately from within the transaction, because the memory to be released
might have been allocated in non-transactional code. In case the transaction has to restart, there
would be no chance of getting back the memory at the specific address. Instead, the deferred
apply method of free returns the memory to the system. Its undo method does nothing.

An important implementation detail is the interference of free with other running transac-
tions. TinySTM exports the interface tanger stm store mark written, which allows to mark
arbitrary areas of memory to be written. The execute method of free uses this interface to
detect conflicts on the supplied memory region.1 If any other running transaction already uses
the referenced memory, the freeing transaction is aborted. This is a problem with irrevocability.
If a transaction runs irrevocably and tries to free memory used by some other transaction, it
would be aborted. The only way to reliably prevent this from happening is to disallow for any
concurrent transactions while one transaction is irrevocable. Thus, an irrevocable transaction is
executed exclusively with the current implementation.

1The size of the memory region is determined by using glibc’s internal interface malloc useable size.
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Figure 5.1: The model of file-descriptor I/O in Unix. Each application contains a set of file
descriptors, which refer to in-kernel open file descriptions. These in turn refer to
low-level buffers, which holds the file content or a fifo’s data. The file descriptors
are specific to each application, whereas the open file descriptions and file buffers are
shared among all running processes.

5.2 File-descriptor I/O

File descriptors are the low-level handles for file access in Unix. However, file descriptors are not
restricted to files only, but are used to access fifos, sockets, and other buffers as well. The I/O
component strives to isolate the effects of transactions within the same process, isolation from
other processes in the system is not provided.

5.2.1 Unix’ model of file-descriptor I/O

When it comes to file-descriptor I/O, Unix-like operating systems distinguish between three
layers of abstraction. The two lower layers are typically only accessible when running in kernel
mode, whereas the top-most layer is accessibly from within an application in user mode. This is
illustrated in Figure 5.1.

The lowest layer is a buffer, which contains the actual data. This can be a file on the hard
drive or a memory page containing the data of a fifo.

On top of the file buffer is an open file description. This is a record containing information
about the current access, such as the file offset or read-write mode. It is created by function
calls that provide buffers to the application, such as open in case of file buffers. An open file
description refers to exactly one underlying buffer, but a buffer can be referenced by multiple
open file descriptions, which then share the buffer’s content.
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Strategy Approach Implementation Revocable Implemented for

noundo Pessimistic Global lock No All
2PL Pessimistic Two-phase locking Yes Regular files, writes on fifos and

sockets
TS Optimistic Timestamps Yes Regular files, writes on fifos and

sockets

Table 5.1: Overview of available strategies for concurrency control on file descriptors.

The top-most structure in the hierarchy is a file descriptor. It is the only structure that is
directly visible to the application and acts as a handle for doing interactions with the underlying
open file description and buffer. A file descriptor refers to exactly one open file description,
but an open file description can be referenced by more than one file descriptor. For example an
application successfully opens a file with a call to open. This returns a file descriptor, which refers
to a newly created open file description. The application now calls dup on the file descriptor.
This creates a new file descriptor that refers to the same open file description as the old one.

5.2.2 Concurrency control on files

Before the handling of different file types is discussed, this section first presents the I/O com-
ponent’s options for controlling concurrency on files. Each file buffer is protected by one of
three strategies: noundo, two-phase locking, and time stamps. Table 5.1 contains an overview.
In addition to protecting the file’s content, these strategies also determine of how to handle
concurrency on the open file’s state, such as the file offset.

The two latter strategies, two-phase locking and timestamps, allow fine-grained concurrency
control on the file buffer. In order to achieve this, each file buffer is divided into a set of records.
Each record spans an area of a fixed size and provides concurrency control for its content.

Noundo. The first strategy, noundo, makes a transaction execute exclusively, and hence needs
no file-buffer concurrency control at all. When this has been selected, a transaction doing file
I/O requests irrevocability before executing the actual I/O operation. The operation is then
executed directly without deferral or compensation, which reduces the overhead of this mode.

The strategy noundo is needed for situations where some action needs irrevocability. It does
not allow for concurrent transactions; but supports arbitrary non-transactional operations, since
these can simply be wrapped and executed directly. Also, errors are generated immediately, so
no commit-time error handling is necessary.

Two-phase locking. The second strategy, 2PL, provides pessimistic concurrency control. It
employes strong strict two-phase locking [BHG87] for each individual file record. Before a trans-
action reads a record, it acquires the respective reader lock if no writer is already present. Before
a transaction writes a record, it acquires an exclusive writer lock if no reader is present. A reader
lock can also be upgraded to a writer lock, but not if other readers are present. The transaction
aborts in cases where it cannot acquire a lock because of conflicts.

The actual write operations are deferred into the transaction’s commit phase. During the com-
mit, all write operations are applied in the order of their execution and the open file description’s
global offset is updated. Read operations only need to update the file offset. At the end of the
commit, all locks are released.
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The 2PL strategy is indented for files where many conflicts are expected or a transaction
executed many read operations. It generates false conflicts if concurrent transactions write to
overlapping regions in the file buffer. Each transaction tries to write-lock the region. One writer
succeeds, whereas the other writers observe a conflict and abort themselves. Real conflicts only
occur among reading and writing transactions, so the transactions aborted for no reason.

Timestamps. The third strategy, TS, provides optimistic concurrency control by associating a
timestamp with each record. For read operations TS uses eager validation to ensure that the read
data is consistent. Before a record is first read, the transaction retrieves a copy of the record’s
global timestamp that is current at this point in time. Then the read operation is executed.
Afterwards the local timestamps of all records in the transaction’s read set are compared to
their global counterparts. If any global timestamp is higher than its local timestamp, some other
transaction committed an update to this record’s region in the file buffer. The transaction’s
snapshot is inconsistent and the transaction has to abort. A detailed discussion on how validation
is implemented is given in Section 4.2.

All write operations are deferred and applied during the commit. On commit, first all regions
in the read and write sets are temporarily locked to guarantee atomicity. The read set is again
validated to prevent inconsistencies. If successful the write set is applied, the timestamp of each
written record is incremented, and the locks are released.

A problem of timestamps is their potential overflow. The current implementation uses 64-bit
version numbers to minimize the probability of this to happen. To safely handle overflows in all
situations, a future revision of the I/O component could handle this explicitly; for example by
first aborting all transactions on a domain when the domain’s timestamp values reach some upper
bound; then setting all timestamps to zero; and afterwards restarting the aborted transactions.

The strategy TS is intended for files where transactions mostly write values, but seldom read.
With TS, a transaction only validates its read set. If several transactions write to overlapping
regions in the file buffer, none of them has to abort. This prevents a shortcoming in the im-
plementation of 2PL: Writing transactions can observe false conflicts with other writers, due to
the eager acquisition of locks. In cases where only few real conflicts are to be expected, the
additional work of validation might be passable.

Each file has its own strategy for concurrency control. The strategy is based on the file
buffer’s type, and can be selected by the application programmer while the buffer is not in
use. Any other shared resource that refers to the buffer, such as the file offset in the open file
description, inherits the buffer’s strategy. Switching a buffer’s strategy while it is in use requires
coordination among the affected transactions and the conversion of concurrency-control data
structures. Because of the inherent complexity of this procedure, strategies cannot be switched
once they are established. The only exception is that a buffer selects noundo or one of the
executed actions requires irrevocability. This turns the transaction irrevocable and all previous
updates on all files are applied. As soon as the transaction is running irrevocably, noundo is
used for all actions on all buffers.

5.2.3 Handling of different file types

Unix systems distinguish among a number of different file types, such as regular files, fifos, or
sockets. This section provides details on the handling of the most important of these types.
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Regular files

Regular files are mostly used for storing data within the file system. This includes persistent
data, such as data created by the user or some system program, as well as transient data, such as
the web browser’s local cache file. Regular files also serve as advisory locks to signal the presence
of processes within the system. For example, a system daemon might create an advisory lock
file at a fixed location in the file system. Whenever a second instance of the daemon is started,
it recognizes the lock file and exits immediately, as the service is already running.

Problems. Transactions encounter problems when using regular files for inter-process commu-
nication. A deadlock occurs if there is a cyclic dependency among them. This is the case if the
transactions read and write to the file buffer, and the output of either transaction is the input
of the others.

Assume two transactions T 1 and T 2 communicate by reading and writing within a file buffer.
Transaction T 1 is waiting for a message from T 2 by reading from the buffer. Transaction T 2

writes to the file buffer and afterwards waits for an answer from T 1 by reading as well. As
described in Section 5.2.6 revocable write operations cannot be compensated in the general case,
so they have to be deferred until the transaction commits. Thus, the message’s write operation
does not happen until T 2 commits, which never happens because it waits for T 1 to answer. So,
both transactions are blocked by waiting for each other.

Handling. The I/O component allows for fine-grained control of concurrency on a file’s buffer.
All three strategies are provided. The described problem of inter-process communication is of
little relevance, as it rarely occurs in practice. posix systems provide better suited methods of
inter-process communication.

Special attention is given to the file offset. The file offset determines the offset in the file
buffer where I/O operations take place. There are 3 basic operations that depend on the file
offset. These are reads, writes, and seeks. Each seek operation sets the file offset relative to some
position, which is either the current offset, the file’s beginning, or the file’s end; and returns the
new absolute file offset. Each read operation returns the content at the current file offset and
afterwards increases its value by the amount of read bytes. Both, seek and read, depend on the
value of the file offset during their execution. The write operation does not depend on the file
offset during its execution, but only during its appliance. In write-only transactions the file offset
is not made available within the transaction; neither explicitly via seek nor implicitly via read.
Thus, the transaction logic does not see its value.

This allows the framework to enable non-conflicting writes for the TS strategy. Assume two
transactions only executing write operations. Both are ready to commit. The framework first
atomically commits one transaction at the current file offset. Afterwards it commits the other
transactions to the new file offset. In a different case, where a transaction contains read or seek
operations, there exists a dependency on the file offset. Such a transaction has to abort if this
dependency generates any conflicts.

FIFOs

A first-in-first-out buffer, abbreviated fifo, provides a half-duplex channel for connecting distinct
processes in the system. Each fifo has a read end and a write end. Writing to a fifo’s write
end sends data over the channel to the process at the read end, reading from a fifo’s read end
receives data from the process at the write end.
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Problems. A lot of problems arise when using fifos from within transactions. One problem is
that reads cannot be compensated. Assume a transaction has read some bytes from a fifo. If the
transaction aborts, the read’s compensation action had to return the read data to the beginning
of the fifo’s memory buffer, so that it is available when the transaction retries. However, pushing
back data to the fifo buffer is not supported by the operating system.

An imaginable workaround is to store the read bytes in a framework-internal buffer when
an abort occurs, and reading them during a retry. This does not work correctly with non-
transactional code. Assume a transaction reads some bytes from a fifo and aborts afterwards.
It pushes the read bytes to the framework-internal buffer. During the retry, the transaction
reads less bytes from the buffer than it pushed in before. So when it commits, the buffer is
not yet empty. If the next read from this fifo occurs in non-transactional code, it misses the
data left in the framework’s buffer. This violates the weak isolation among transactional and
non-transactional code, which has been discussed in Section 3.1. In the presented example,
transactional and non-transactional code cannot be interleaved reliably. A possible solution for
this problem includes a new kernel interface for pushing back data into the fifo’s buffer in the
case of an abort. The returned data could then be retrieved correctly by non-transactional code.

Other problems arises when using fifos to communicate between transactions in the same
process. Assume two transactions communicating over a fifo. Both transactions run in the
same address space; so they are managed by the same transactional memory system. When the
first read from the fifo occurs, the reading transaction becomes irrevocable. It is then blocked
by the read operation until some data arrives. This does not happen in the case that the sending
transaction has not yet started, as the sender has to wait for the blocked receiver to commit.
The occurring deadlock is again a violation of the specified rules for isolation.

A similar situation occurs if there is a cyclic dependency among transactions in the same
address space. Each transaction reads from one of the fifos, but only one of them can become
irrevocable. The other transactions have to abort. This again results in a deadlock as the
irrevocable transaction waits forever for its communication partner.

Handling. Despite all these problems, the framework provides fifo support for transactions. It
defers all writes until the commit happens, and makes a transaction irrevocable when it attempts
to read from a fifo. The problematic case that a fifo is used for communication within the
same address space is very uncommon in real-world applications, as there are better and faster
alternatives to fifos, such as process-local message queues.

Because fifos are not seekable, it is only possible to read and write at the beginning, re-
spectively end, of the data buffer. Concurrency control on the fifos content is therefore not
necessary, respectively possible. As for writing to regular files, the three strategies for concur-
rency control are provided. The optimistic strategy TS detects conflicts based on the timestamp
of the fifo’s file offset. However, with the current implementation, it is not necessary to have
any timestamp at all. All reads are executed irrevocably, and all writes are deferred into the
transaction’s commit. Thus, there are neither any overlaps with other transactions; nor any
internal variables, such as an offset, to maintain. The pessimistic strategy 2PL detects conflicts
by locking the fifo for a transaction. The strategy noundo makes a transaction irrevocable
before accessing the fifo. Table 5.1 summarizes this.

Sockets

Connection-oriented sockets are bi-directional communication channels between processes in a
computer network. Data written to one end of the communication channel is transmitted to the
other end of the channel and can be read there.
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Sockets have similar properties as fifos. Like fifos, sockets are not seekable. Any reads and
writes occur at the beginning, respectively the end, of the contained data.

Problems. Sockets also have the same problems as fifos: non-compensatable reads and cyclic
dependencies among peers. The problem of cyclic dependencies among transactions in the same
address space is more severe with sockets than with fifos, as socket communication within the
same address space is common in today’s software. For example, modern computer games often
have a client-server architecture to ease the implementation of multi-player games. The server
hereby provides the central management of the game and coordinates the actions of all players.
Each player’s client handles input, output, and communication with the server. In the case that
client and server run on the same host they often share the same address space to save memory,
but still communicate over a socket connection. This leads to the deadlocks described in Section
5.2.3 if server and client use transactions while communicating. A preliminary example of such
an application is the game Atomic Quake [ZGU+09], which uses transactional memory in the
server part.

Handling. Sockets and fifos share the same properties and problems. Hence, they are treated
in exactly the same way. The framework does not provide connection-less sockets, but the
discussion applies to them as well.

Devices and other file types

Other file types include device files for hardware access, shared memory objects, and possibly
others. Most of these types cannot be used safely from within transactions. For example, when
accessing a device file, the underlying hardware has to be prepared that any executed action
might be compensated or deferred. None of today’s consumer hardware devices provides such a
facility. So if one of these file types is being used from within transactional code, the framework
switches the respective transaction to irrevocability.

It is questionable whether any of these file types should be used from within transactions at
all. By making a transaction irrevocable, the transactional memory system can provide serialized
access, but it is highly context dependent whether this makes sense. For example, irrevocability
might work well when interacting with the user’s terminal. On the other hand, having several
transactions writing to a sound card’s device file is unlikely to produce meaningful output from
this device.

5.2.4 The framework’s model of file-descriptor I/O

The file-descriptor I/O component provides transactional semantics for file access. The design
is based on how Unix internally handles file descriptor I/O and allows for the fine-grained ab-
straction of the related resources.

The file-descriptor I/O model is illustrated in Figure 5.2. Each individual file descriptor,
open file description, and buffer is represented by a framework-internal domain. Two types of
domains are provided: one domain type for representing a file descriptor, and one domain type
for representing an open file description and its buffer. Each domain hold the process-global and
transaction-local state of its resource. For each there is exactly one global state, and one state
per transaction. To allow for weak isolation, the validity of all domain’s data strucures ends with
the commit of the last transaction in a set of concurrent transactions.
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Figure 5.2: The connection among local and global file domains. The file domains are file de-
scriptors and open file descriptions. File buffers are implicitly contained in open
file descriptions. Each file-descriptor domain is connected to an open-file-description
domain, either locally or globally. Each local domain is also connected to its global
counterpart.
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Buffers and open file descriptions

The kernel part of the I/O stack are the file buffers and open file descriptions. To reliably
handled them within the framework, it is necessary to distinguish among individual instances of
those resources. File buffers can be distinguished by their device ID and inode ID. The device ID
represents the file system or communication protocol; the inode ID represents a device-internal
identifier.

It is not possible to distinguish among open file descriptions. For this reasons an open file
description and its underlying file buffer are treated as the same resource, and both use the
file-buffer ID as their unique identifier. This leads to problems when transactional code uses
two distinct open file descriptions that share the same file buffer. Assume a file is opened twice
from within non-transactional code. Two distinct open file descriptions are created, which both
share the same file buffer. When using the first open file description in a transaction, its domain
is inserted into a framework-internal open-file-description table with the unique ID constructed
from its file buffer’s device ID and inode ID. When the second open file description is used in the
transaction, it has the same unique ID as the first open file description, as it uses the same file
buffer. Thus, its entry seems already present in the open-file-description table. The transaction
now uses this wrong domain when it executes an action on the second file descriptor. This can
cause problems when tracking the state of the open file description or its synchronization data
structures. For example, if an executed action changes the file offset of the second open file
description, the update would get applied to the first open file description.

At the moment, the only reliable way to handle this problem is to not allow the same file to
be opened twice. The I/O component checks this case and aborts the transaction if a newly
opened file descriptor’s open file description is already present in the transaction’s open-file-
description table. What happens in non-transactional code is out of the component’s scope. It
is the application developer’s responsibility to ensure that no two open file descriptions refer to
the same file buffer.

A simple workaround for the problem is to check whether transactions already use an open
file description via a different file descriptor. In this case the transaction could be switched to
serial mode, which can avoid the internal state tables completely.

For each application, the kernel maintains an internal table that maps file descriptors to open
file descriptions. A real solution to the problem is to add a unique ID for each open file description
and make it available to the application. The ID could be returned by a call to fcntl, or by
a special kernel interface for retrieving open-file-description IDs. The kernel could provide a
system call to make this information available to the application or export it via the proc file
system.

When using an open file description, and by extension a file buffer, within a transaction there
is a global and a local state associated with its domain. The global state consists of

• a unique ID number,

• data structures for synchronization,

• a reference counter,

• the file type, and

• a set of properties for the type.

As described above, the ID number is used internally to distinguish among different open file
descriptions. This is necessary for adding domains that represent new open file descriptions, and
connecting the domains of file descriptors and open file descriptions.
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The synchronization data structures are used for concurrency control on the open file descrip-
tion. This can be a lock, a timestamp, or something similar. The protection of the file buffer’s
content is described in detail in Section 5.2.5.

The reference counter holds the number of transactions using the open file description. It is
increased whenever a transaction first uses the open file description, and decreased when the
transaction commits or aborts.

The file type holds information whether the open file description refers to a regular file, a fifo,
or some other type. The properties are specific to the type of the open file description’s buffer.
For example, if the buffer is a regular file, the global state contains the file offset.

An open-file-descriptor domain’s transaction-local state consists of

• an indication whether the open file description is valid,

• some properties specific to the type of the underlying buffer, and

• the transaction’s local read and write sets for the buffer.

The indicator tells of whether the transaction holds a consistent reference on the open file
description’s global state. For example, if the global state uses timestamps for concurrency
control, the indicator is the time when the reference on the file-descriptor domain was acquired.

The properties are again specific to the type of open file description’s buffer. The read and
local write sets contain the parameters of operations that have been executed on the open file
descriptor, respective its buffer. This include actual write operations on the data, updates to the
file offset, and read regions of the buffer.

File descriptors

The application’s handle to a file is the file descriptor. It is the user-space end of the I/O stack.
The global state of a file descriptor’s domain consists of

• synchronization data structures,

• the ID of the associated global open-file-description domain,

• a reference counter, and

• a state flag.

Similar to the open file description, the synchronization data structures are used for detecting
conflicts on the file descriptor.

The open file description’s ID is used to connect the domains of the file descriptor to its open
file description’s domain. This is necessary as programs only operate on file descriptors, whereas
most of the actual work is done in relation to an open file description.

The reference counter holds the number of transactions that use the file descriptor at any
given point in time. When a transaction first uses a file descriptor it obtains a reference, and
when it commits or aborts it releases the reference.

The state flag indicates whether the file descriptor

• is in use by some transaction (inuse),

• is not in use (unused), or

• has been closed by any transaction (closing).
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Figure 5.3: The state diagram for file-descriptor domains. Initially, each file-descriptor domain
is in the state unused. When it is first referenced it switches to the state inuse, and
back to unused after the last reference has been released. When a close operation is
committed, the state is immediately switched to closing. This makes all conflicting
transactions release their references and abort. After the last reference has been
released, the file descriptor is actually closed and its domain’s state is set back to
unused.

Together, the reference counter and the state flag prevent the file descriptor from disappearing
behind the back of a transaction, as illustrated in Figure 5.3. By default a file descriptor is not
referenced by any transaction and therefore its domain is in the state unused. When the first
transaction references the file descriptor’s domain, its state is switched to inuse. Every further
reference keeps the domain in this state until all references have been released. When the last
reference is released the domain is switched back to unused.

A special case occurs when a transaction applies a close operation on a file descriptor. Then
the file-descriptor domain’s state is immediately switched to closing. This signals all other
transactions that refer to the domain to abort and release their reference. Also, no new references
can be taken of a file-descriptor domain that is in the state closing. When the last reference
is released, the domain switches to unused and the file descriptor is finally closed. Meanwhile
the committing transaction can proceed. This protocol allows to reliably open and close file
descriptors that are in use by several transactions at the same time.

Similar to open file descriptions, a file-descriptor domain’s local state consists of

• the ID of the associated local open-file-descriptor state, and

• an indicator of the validity of the reference on the global file-descriptor state.

5.2.5 Data structures for serializing file-buffer access

Together with concurrency control on a file’s data structures, concurrency control on the file’s con-
tent is provided. This is implemented by dividing each file buffer into records: non-overlapping,
equally-sized blocks of raw data.

46



Each individual record of a file buffer has an associated data structure that allows concurrency
control for this record, such as a lock. The actual data that is protected by the record data
structure, is stored in the file buffer or the transaction’s read and write sets.

Organization of these record data structures imposes trade-offs to the framework’s implemen-
tation. These are

• scalability,

• access time, and

• memory consumption of the data structure.

Scalability refers to the overall performance of the data structure when the file buffer is ac-
cessed concurrently. Retrieving a record should ideally not interfere with concurrent transactions
working on the same file buffer.

Access time refers to the time a single, non-concurrent access takes. When a location in the
file buffer is referred to, the average time to access its record’s state should be minimal, in terms
of algorithmic complexity and absolute number of processor cycles.

Finally, memory consumption refers to the amount of main memory needed to hold the record
data structures. To fully cover large files, a lot of records might be necessary. Thus, records of
unused portions of the file should ideally not be allocated at all.

Array-based implementation

For a naive approach, all concurrency-control data structures of a file buffer can be contained
in an array. For each file buffer there is a global array with global locks or timestamps, and for
each transaction using the buffer there is a local array with the transaction’s local lock states
or timestamps. Scalability here refers to the number of concurrent threads that can work on
the array, access time refers to the amount of time necessary to retrieve a single cell in the
array, and memory consumption refers to the amount of memory it takes to store the global and
transaction-local array state.

The scalability and access time for obtaining a record from an array is very good. As individual
cells of an array can be accesses concurrently and in constant time, this approach can scale and
perform quite well.

One disadvantage of an array is the need to increase its number of cells. The reallocation
might move the array to another location in main memory. So it is possible to either use or to
reallocate an array, but not both at the same time. This might hinder scalability.

Another disadvantage is the array’s dense nature, which results in a large memory consumption
for this approach. Assume a file buffer of 1 GiB and a record size of 32 byte. This results in
33,554,432 records. For each of these records there is a global and a transaction-local state
variable. Further assume that on average each state variable is 4 byte in size. For a timestamp
this might even be to small. The global and local data structures for protecting access to the file
buffer would allocate 256 MiB, which is one forth of the file buffer’s size. With each additional
concurrent transaction, the amount of memory would increase by 128 MiB.

Tree-based implementation

To avoid these problems the framework organizes each file buffer’s records in a set of n-ary trees.
There is one global tree for each file buffer, and another local tree for each transaction using the
buffer. Each node in the tree points to a child node or a leaf of the tree.
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Figure 5.4: Searching in a record tree. The record data structure for the file-buffer offset 0110
1110 is retrieved from the tree. Each record covers 4 bytes of the file buffer. The
record index is first divided into smaller chunks. In this example, there are three
chunks where each chunk is 2 bit wide. The first chunk 01 is used as index into
the root node’s child table, the second chunk 10 is used as index for the first child
node’s child table, and the third chunk is used as index into the leaf’s record table.
The result is the timestamp of the record; seven in this case. The trailing offset
component describes an offset within the record and is not used. For searches of
consecutive records the found leaf already holds the respective data structures in
many cases.

A tree is build lazily during its traversal. It can happen that the tree spans a smaller range
than necessary if no access beyond some offset has taken place. In this case the tree is enlarged
to support a larger file size by adding one or more new root nodes. The old root node already
spans a range at the file buffer’s beginning; so it is used as the new root node’s first child.

It can also happen that the tree spans a large enough range, but some child nodes or leafs are
not yet in existence because no access in the specific area has taken place before. Such missing
child nodes and leafs are allocated and initialized during the traversal.

When looking up a file offset’s record data structure from the tree, the offset is first right-
shifted by the record size’s number of bits to get the record index. The record index is divided
into smaller chunks while walking down the tree to search for the leaf containing the record’s
data structure. Figure 5.4 illustrates a tree’s organization and traversal.

When searching for a leaf in a file buffer’s global tree, first the transaction’s local tree for the
buffer is traversed. This returns the local leaf for the specific record. On the first retrieval of the
leaf, the global leaf of the record is retrieved from the file buffer’s global tree as well. A pointer
to the global leaf is stored in the local leaf. For any further searches of records in this leaf only
the local traversal has to be done and the global leaf is retrieved automatically. This reduces
search effort and contention on the global tree’s node data structures.

Searching for a record has logarithmic complexity for trees, instead of constant complexity in
the case of arrays. To minimize the time spend on traversal, each leaf can handle a large amount
of records. For example, with the benchmark setup in Chapter 6 each leaf holds 512 consecutive
records with each record handling an area of 32 bytes.
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In most cases when checking a set of records during a read or write operation, few operations
on the tree need to be performed. Once the respective leaf has been found for the first record it
also holds the data structures of adjacent records.

To further improve access times, the implementation keeps all trees in place once they are
established. Global trees are created once and are only destroyed when the process exits. Local
trees are reused over transaction boundaries. So if a thread executes several transactions that use
the same file buffers, the later transactions mostly reuse trees that have been established by the
same thread’s previous transactions. Some cleanup operations for each record’s data structures
might be necessary between successive transactions, but local trees are not destroyed until the
thread quits.

The memory consumption of a tree depends on the transactions’ usage of its underlying file
buffer. If access is distributed equally within the file buffer, the memory consumption is similar
to an array-based implementation. If transactions mostly work at the same offsets in the file,
the record tree is almost empty and the memory consumption is low.

5.2.6 Actions

The current support of file-descriptor I/O provides the most often used I/O primitives: accept,
bind, close, connect, dup, dup2, fcntl, fsync, listen, lseek, open, pipe, pread, pwrite,
read, recv, select, send, shutdown, socket, write, and sync.

For some functions, such as open, it is debatable whether these are really file functions or
rather file-system functions. The distribution of functions between this component and the file-
system component of Section 5.3 might seem arbitrary. The coverage of the file I/O component is
geared to meet the coverage of the file-stream interface in the ISO C standard. File streams only
intent to handle file operations, but not file-system operations. The rule of thumb is that if there
is an equivalent file-stream function, a function belongs to the file I/O component, otherwise it
belongs to the file-system component. For future revisions, it might make sense to merge both
components.

The first set of actions is related to the creation and destruction of file descriptors. The concept
of their implementation is very similar to that of malloc and free of Section 5.1.

Open, dup, pipe, and socket. These calls create new file descriptors and possibly open file
descriptions in the system. Their execution always proceeds in the same way. In the first step
the primitive itself is executed. It returns one or two newly created file descriptors. In the second
step the framework-internal data structures for the new resources are created and referenced.
Section 5.2.4 discusses this in detail. Due to the inability of distinguishing among open file
descriptions, which is also discussed in Section 5.2.4, it is currently not supported to open a file
twice.

Calls to open respect the transaction local working directory. The execute method of open
is implemented with openat, a new variant of open that allows to specify its current working
directory. This way each transaction can open files in its own local working directory. This is
explained in further detail in Section 5.3.2.

The apply methods of these actions do nothing. The undo methods simply close any created
file descriptors. This is possible since no other transaction could have legally accessed them yet.
If the file descriptor referred to a file that is owned exclusively by the transaction, the file is
removed on undo. Exclusively owned files, such as temporary files and lock files, are detected
by checking for the bit mask O CREAT|O EXCL in the open call’s flags argument. Files that are
not exclusively owned are not removed, which might leave files of aborted transaction in the file
system.
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The rationale of this decision is that non-exclusively owned files are possibly shared with other,
external processes. The framework should not remove files behind the back of those processes.
In this case that the file’s name is also not chosen randomly, but follows some pattern, such that
independent processes can use the correct filename. When the aborted transaction retries, it is
likely to use the same filename as before. The possibility of leaving back orphaned files on abort
surely is not optimal, but is still better than removing arbitrary files, which also opens the door to
security breaches. If the transaction programmer wants to ensure that the transaction does not
leave orphaned files in the file system, he or she should switch the transaction to irrevocability
before executing the first call to open.

If open is supplied with the flag O TRUNC, the file buffer has to be erased. Such an action can
not be compensated easily. In this case the transaction becomes irrevocable.

Currently unsupported is the flag O APPEND for opening files. This flag makes any write
operation take effect at the end of the file buffer instead of the open file description’s current
offset. Support for O APPEND should be implementable without major problems.

Close. Calls to close destroy file descriptors. The file descriptor’s open file description is
destroyed as well if it is not referred by any other file descriptor. The execute method of a close
only inserts an entry into the log. The undo method does nothing. To prevent errors in other
transactions, the apply method of a close operation does not close the file descriptor directly.
Instead, it sets the framework’s internal domain for this file descriptor to the state closing and
releases its reference. Any other transaction using this file descriptor will abort when it observes
closing and release its reference on the file descriptor as well. When the reference counter is
zero, the file descriptor is finally closed and its domain’s state is set to unused. There is no need
for the committing transaction to wait for this to happen. It can continue its commit after it
released its own reference. The reference counting on file descriptors is also discussed in Section
5.2.4.

Dup2. Similar to dup, dup2 duplicates file descriptors. It takes two arguments: the source and
the target file descriptor.

The function dup2 is problematic. It makes the target refer to the same open file description
as the source. The problem with dup2 is that it closes the target file descriptor if this already
refers to another open file description. The close operation cannot be deferred because the
duplication is a constructive operation, which has to be done within the transaction. It can
be compensated by duplicating the old target file descriptor, but this strategy conflicts with
any deferred write operations. During commit, these writes would use the target’s new open
file description, which violates consistency and weak isolation from other transactions using the
same target file descriptor. For these reasons dup2 is only provided for irrevocable transactions.

As a workaround it might be possible for the I/O component to defer the dup2 operation and
internally redirect all calls on the old file descriptor to the new file descriptor.

The second set of actions is related to reading and writing of file content. Their execution
starts by first referencing the domains of the supplied file descriptor and open file description;
then a primitive-specific action follows.

Lseek. This call changes an open file description’s current file offset. It does this for revocable
transactions by modifying the transaction’s local file offset during its execution. When applied,
the actual lseek call is executed; during undo nothing is done. The initial local offset is retrieved
from the domain’s global offset during the domain’s local setup.
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For revocable transactions, it is necessary to detect conflicts on the file offset as well. The
concurrency-control strategy for the offset is the same as for the file buffer’s records. If noundo
has been selected, an lseek call is executed immediately.

Pread, read, and recv. These actions read values from a file buffer. The function pread is
offset-independent, but can only be used on seekable buffers, namely files. Its implementation
depends on the selected strategy for concurrency-control, but the general behavior for revocable
transactions is outlined here. Calls to pread are always executed immediately because the read
data is needed within the transactions. In the case of a revocable transaction, the call might need
to lock some file records or validate some record’s timestamps. It also checks the transaction’s
local write set whether the transaction has previously written at the read offset, and copies the
data from the write set if this is the case. Applying and undoing pread does nothing.

Calls to read behave similar to pread, but operate at the open file description’s current file
offset and increments its value while being executed. For seekable buffers, it is implemented like
pread at the local offset with an additional call to lseek. For non-seekable buffers, such as fifos
and sockets, read makes the transaction irrevocable.

The function recv is a special version of read for sockets. It takes an extra argument with
socket-specific flags. In any case, read’s behavior is provided: the transaction becomes irrevoca-
ble.

Reading can block for an unspecified amount of time if data is not available. To prevent this
from happening in revocable transactions, the execute method can wait for a certain amount of
time and afterwards abort the transaction. This does not really solve the problem of the blocking
read, but prevents starvation of unrelated transactions that want to access shared resources that
have been locked by the blocked transaction.

Pwrite, write, and send. The function pwrite writes at a specific offset within a seekable file
buffer. Its implementation depends on the selected concurrency-control strategy. In the case of
an irrevocable transaction, calls to pwrite are applied immediately.

In the case of a revocable transaction, calls to pwrite are deferred into the apply method.
Similar to pread, pwrite might need to acquire some records’ locks. For deferred write oper-
ations the I/O component applies an optimization: If several successive write operations work
at consecutive offsets in the file buffer, they are merged into one single, large write when being
applied. This saves the overhead of all but one calls.

The function write is an offset-dependent variant of pwrite and moves the file offset while
being executed. For revocable transactions, the concurrency control for the file offset is the same
as for read operations. Calls to write operate on any file type. If it is executed on a non-seekable
buffer, the action is deferred as for seekable buffers. In the case of an irrevocable transaction,
the write is not deferred, but applied immediately.

The function send writes to a socket. Like recv, it requires an additional flags argument. If
no flags are given, it behaves similar to write and is handled as such by the framework. If any
flags are set, the transaction switches to irrevocability.

Writing can block if the output buffer fills up, like when writing to a fifo without the other
end’s process reading. In contrast to reading, write operations are deferred into the commit
phase, so the blocked transaction cannot be aborted easily. A possible workaround is to set the
respective file descriptor to non-blocking mode during the commit. In that case an affected write
operation does not block, but returns the error code EAGAIN. This triggers a call to the registered
error-handler function, which might be able handle the error by signaling the reader process to
deplete the buffer. A more reliable solution is to explicitly support this case within the kernel,
which could provide arbitrarily large FIFO buffers.
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Command Purpose Revocable

F DUPFD Duplicate file descriptor and clear O CLOEXEC Implemented like dup
F DUPFD CLOEXEC Duplicate file descriptor and set O CLOEXEC Implemented like dup
F GETFD Get file-descriptor flags Yes
F SETFD Set file-descriptor flags No
F GETFL Get file-status flags Yes
F SETFL Set file-status flags No
F GETOWN Get owner process Yes
F SETOWN Set owner process No
F GETLK Get file-lock information Yes
F SETLK Try to aquire file locks No
F SETLKW Aquire file locks No

Table 5.2: Overview of fcntl commands in the posix specification.

The third set of actions consists of functions that can be considered as special purpose and do
not strictly fit into resource management or I/O.

Sync and fsync. These calls make the operating system flush its write buffers to the disk,
either system wide or for specific file descriptors. Sync is executed twice, the first time during
the transaction to flush everything that has been written until this point and a second time from
within its apply method to flush everything written during the transaction’s commit. It is not
necessary to flush the transaction’s write sets and become irrevocable before calling sync: the
posix specification explicitly permits its implementation to do nothing. Fsync is inserted into
the log and called from within its apply method.

Select. The function select waits for I/O on a set of file descriptors. It is executed immediately
within the transaction. The select call’s execute method references all file descriptors it has
to wait upon to prevent their closing by other transactions. Select blocks the calling thread,
but allows to set a timeout. If no timeout is given the framework’s implementation set it to a
default value. If no I/O has been detected when the timeout is reached the transaction aborts.
This prevents deadlocks and stagnation with select calls that would otherwise block forever,
and thus violate isolation among transactions. If a transaction is running irrevocably, the call
behaves like its non-transactional counterpart. Especially, no automatic timeout is generated by
the framework, as the transaction could not abort anyway.

Fcntl. A call to fcntl reads or writes the parameters of a file descriptor or open file description.
Its transactional behavior depends on the given command parameter. As a general rule: If a
read command is given then fcntl reads file parameters immediately; if a write command is
given it switches to irrevocability. A complete overview of all commands is given in Table 5.2.
The same synchronization data structures as for the file offset are used for concurrency control.

Accept, bind, connect, listen, shutdown. These calls are related to connection handling of
sockets. The successful use of these calls depends on the communication peer, which is not
under control of the transactional memory system. Hence, a transaction becomes irrevocable
before executing one of these calls.
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5.3 File System

In posix systems, the file system is a resource shared by all existing processes. Thus, the
transactional memory system does not have complete control of what interaction with other
processes is happening while file-system-related code is running.

5.3.1 Problems with file-system-related transactions

Because of the file system’s shared nature it is very hard to give any useful guarantees for
isolation among different processes. Without support from the operating-system kernel, it is
often impossible to guarantee whether conflicts within the file system can be resolved or not.
This section gives some examples of what problems to expect.

The first example contains several processes that try to create files with the same name. It is
not possible to handle such conflicts from within the transactional memory system. This has to
be coordinated by the file system or the transactions itself.

There are also no clear semantics for rolling back updates within the file system. Assume a
transaction created a new file. Rolling back this action means removing the file from the file
system. This is not safely possible because it is not sure whether the file still is the one created
by the transaction or if another process has replaced it. A partial solution to this problem is to
compare the inode number of the file to be removed with the inode number of the created file.
However, this workaround does not necessarily work if the other process only modified the file,
and contains a race condition between the retrieval of the file’s ID and the file’s removal. Within
this time the file could be replaced or modified.

Another problem arises when undoing renames or removals of files. These operations cannot be
deferred as the transaction might want to create a new file with the same name. When undoing
the operation, a file with the old, removed name might have already been recreated by some
other process in the system. The undo method can either restore the old file or keep the new file
in place. It is not generally decidable of how to proceed in such a situation.

Finally a transaction might have created a new directory. It is not possible to remove this
directory if it is not empty; like in the case that another process created any files there.

5.3.2 POSIX-compatible file-system interaction

The framework builds upon the assumption that for most file-system operations, no special
handling is needed to use them from within transactions. This design relies on the observation
that

1. it is not possible to give transactions the same isolation guarantees for file-system operations
as for process-local operations, and

2. the file system already provides the semantics necessary for single concurrent and atomic
operations.

The first point has been illustrated in Section 5.3.1. Whenever the transactional memory
system tries to compensate a file-system operation, it might interfere badly with other processes,
and the application has to be prepared for this case; just as in the non-transactional case.

Given the second point and the fact that the application needs to be prepared for file-system-
related interference with other processes anyway, there is no need to provide guarantees for
isolation in most cases. Thus, the framework exposes most of the file-system’s actions directly
and relies on the application to correctly handle any interference itself.
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Two notable exceptions exist: The first exception is related to the transaction’s current working
directory, the other concerns exclusively owned files. The working directory is a process-local
variable, which is fully under control of the transactional memory system. By handling access to
this variable, the framework provides each running transaction with its own working directory.

Application programmers on posix systems have developed a set of common practices for
safely interacting with the file system. One example is the atomic creation of new files. Instead
of creating a new file directly and writing to it, the program creates an exclusively owned,
temporary file; fills it with content; and renames it to the final name after all write operations
have been done. Because the rename operation is atomic, there either is no final file or always
exactly one consistent final file; even if multiple writers are present.

The framework makes this strategy available in a transaction-safe fashion. As described above,
creating a new file typically starts by opening a temporary file and later renaming it to the final
name. It is a reasonable assumption that such a temporary is only used by its creator process,
as this is how it is supposed to be actually used. Deleting temporary files during the open’s
compensation action is therefore possible without interfering with other processes in the system.

The framework detects when an exclusively owned file is being opened: This either happens
by a call to mkstemp, or if open is supplied with the parameters O CREAT|O EXCL. Any writes
to such a file are executed according to the currently selected strategy for concurrency control.
The final step of file creation is the rename. A call to rename makes the transaction irrevocable.
If this succeeds, all pending writes to the temporary file are applied and the file is renamed to
its final name. If that, or any previous step, fails; the transaction aborts. During the abort all
pending writes are undone and the file is removed. This way, either a new file with consistent
content is created, or the temporary file is removed. The discussion of open in Section 5.2.6
provides additional details on this behavior.

Note that this does not imply that the final content of the file is created by the last committing
transaction. An external process could change or replace the file at any given time. Section 7.2
contains some ideas of how to solve this problem.

5.3.3 Actions

Since most file-system functions are only wrappers around posix interfaces, only very few oper-
ations are of real interest for the framework’s implementation.

Fchdir and chdir. A call to fchdir or chdir changes the transaction’s local working directory.
When first called, fchdir’s execute method saves the new local working directory as an internal
domain. This is now the transaction’s current working directory. Further calls to fchdir replace
the variable’s value with the appropriate new location. Within the apply method, the process’
working directory is updated with the transaction’s local value. The undo method does nothing.
The function chdir is implemented with fchdir.

Mkstemp. The execute method of mkstemp creates a new temporary file. Temporary files can
be removed safely during an abort. The exclusive nature of the file assures that there can be
no legal interference with other processes in the system. See Section 5.3.2 for a more detailed
discussion of the topic. The compensation action of mkstemp is unlink, which is called from
within the undo method. Mkstemp’s apply method does nothing.

Chmod, fchmod, fstat, getcwd, link, lstat, mkdir, mkfifo, mknod, stat, and unlink. These
operations are wrappers around the posix functions. The only difference is that they respect
the transaction’s current working directory.
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This is implemented with new system functions, which were added in the 2008 release of the
posix specification. Thy are variants of the common file-system functions that take an additional
first argument specifying the function’s working directory.

Rename. Rename atomically changes a file’s name and thereby replaces any previous file with
the same name. The action makes the calling transaction irrevocable. This forces the apply of
the transaction’s write operations on the file. If rename finishes successfully, a new consistent
file has been created. See Section 5.3.2 for details.

5.4 Other Components

In addition to the presented components, the framework’s implementation provides a set of
various other actions that are handled completely by the transactional memory system.

5.4.1 Errno

A special resource is the variable errno: a thread-local value that holds the error code of the last
failed posix function. As errno is very common and used by almost all functions, it is handled by
the transactional memory system. At the beginning of a transaction, the transactional memory
system saves the thread’s current errno value. Within the transaction, the thread-local value
possibly gets updated by posix functions. During an abort, these updates are compensated
by restoring the previously saved value. This makes it possible to directly wrap most simple
functions, instead of providing an intermediate entry point just for saving and restoring the
value of errno.

5.4.2 Math and arithmetic functions

The C standard library’s math facilities include a set of basic mathematical functions. These
consist of some predefined constants; trigonometric functions, such as sin and cos; exponential
and logarithmic functions, such as exp and log; hyperbolic functions, such as sinh; and others.
All of these function are protected actions, and as such are handled by the transactional memory
system.

The math component also contains some weak pseudo-random-number generators. The frame-
work provides the ISO random-number generator. It includes three functions, which are srand,
rand, and rand r. The function srand sets the initial seed value and rand generates the next
pseudo-random number. Both functions depend on a global state variable. The third function,
rand r, is a thread-safe combination of rand and srand. The framework provides each trans-
action with a local copy of the state variable and uses rand r to emulate calls to rand and
srand.

Another facility is the rounding-mode setup for floating-point computations. This is not a
problem with transactions because the setup is thread-local and works on processor registers
only. The framework relies on TinySTM to govern these registers.

5.4.3 String and memory functions

The string and memory functions copy, compare, and modify strings and areas in main memory.
All of these functions are protected actions that receive pointer arguments. To handle them,
the frameworks announces the pointer’s targets to the transactional memory system so that the
functions can be used safely.
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5.4.4 Process, thread, and system functions

Functions for process handling include fork, exec, or wait. Most of these functions alter some
system-wide state and can neither be deferred nor compensated. The transaction has to become
irrevocable before executing one of them. An exception are functions that return some constant
value; such as getpid, which returns the process ID. Those can be called without special handling.

The same is true for thread-related functions, such as pthread create and pthread join.
Most of these functions force irrevocability on the transaction. Transactional support for locking
data structures can be provided when correctly integrated with the transactional memory system
[VGS08].
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6 Evaluation

This chapter evaluates the presented framework’s design and implementation regarding the spec-
ified requirements. The first sections talk about correctness, standards compliance and extensi-
bility; the final section focuses on performance.

6.1 Correctness

This sections presents an argument on the correctness of the transactional execution and after-
wards describes the test cases for the framework’s implementation.

6.1.1 Argument

Correctness has been defined in terms of atomicity, consistency and isolation. The criteria for
isolation of concurrent transaction is conflict serializability. The execution of a set of concurrent
transactions Ti is modeled by a history H: H = {T 1, T 2, ..., Tn}. H is serializable if it is conflict
equivalent to a serial history H’ that contains the same transactions.

The framework constructs H by atomically committing consistent Ti. To show that the
framework provides serializability for its transactions it is necessary to show the equivalence of
all histories H to a serial history H’. Therefore, first the serializability of single Ti is examined
and afterwards the serializability of the union H.

Each Ti describes one single, sequential execution. Conflicting operations in Ti are ordered
by the relation <i. Ti is therefore a conflict-serial history by itself.

To show the correctness of the union H of transactions it is necessary to show how conflict
equivalence is ensured, such that all Ti are ordered according to their observed conflicts, and how
the commit is implemented atomically, so that two transactions do not interfere during commit.

The trivial case is an irrevocable transaction. The framework’s implementation makes such a
transaction run exclusively and not overlap with other transactions, which is exactly the definition
of serial.

For the non-trivial case of revocable transactions, conflict equivalence is ensured by keeping
each domain in a consistent state: a state that can be observed after a commit in a serial
execution. Two cases have to be examined: the consistency of single, individual domains and
the consistency of the composition of all domains used by a transaction.

For individual domains, each domain isolates its resource from the rest of the system. It
provides the transaction with a local state of the resource: the domain’s global state when the
transaction first accessed the resource plus the local updates. A domain also provides some form
of concurrency control, like two-phase locking or timestamp validation, to ensure the consistency
of the local state.

The actual validation is specific to the domain’s implementation. With pessimistic concur-
rency control, the consistency of the local state is guaranteed once it has been validated. With
optimistic domains, the consistency is only guaranteed up to the point of validation. To validate
a read operation, the value is first retrieved and afterwards the consistency of the domain is
validated. Because the validation happened after the retrieval, the retrieved value is consistent
if the validation succeeded.
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The composition of a set of domains is consistent if all its domains are consistent. By validating
all domains individually the validity of the composition can be determined.1 For pessimistic
domains, this again happens by definition; for optimistic domains the validation is performed
after the retrieval of a (every) data value.

To ensure the commit of consistent transactions only, there has to be an atomic step of vali-
dating the composition of a transaction’s domains and applying the transaction’s actions.

For domains with pessimistic concurrency control this is again ensured by definition. All
once validated data items of such a domain are guaranteed to stay valid until the end of the
transaction, which is the end of the commit. For domains with optimistic concurrency control
the framework implements a two-phase locking protocol for locking each domain’s affected data
items during the commit. This allows optimistic domains to perform an atomic step of validation
and update.

The commit of a transaction Ti

1. locks all optimistic domains’ data items that are used by Ti,

2. validates their consistency,

3. updates all data items, and

4. unlocks all domains.

To summarize: the framework allows for the implementation of two-phase locking for all do-
mains. Pessimistic domains have this semantics by default, optimistic domains can implement
two-phase locking during the commit. After all optimistic domains have been locked their consis-
tency is validated. If this succeeds the consistency until this point is guaranteed. In conjunction
with two-phase locking, the consistency until the end of the transaction is guaranteed.

Two-phase locking ensures atomicity of the transaction, as it excludes concurrent transactions
during the commit phase. The validation of the optimistic domains after the locks have been
acquired ensures consistency: no inconsistent transactions can be committed. Two-phase locking
also guarantees that the constructed history H is equivalent to a serial history H’. A formal proof
of the correctness of two-phase locking can be found in [BHG87].

For the currently implemented components, the only exception is the support for file-system
operations. The file system is shared among all processes in the system. For a transactional
memory system in user mode, it is not possible to guarantee isolation among them without having
support from the kernel. It is at most possible to isolate file-system operations of individual
transactions in the local process. The operations of external processes cannot be influenced,
thus a transaction still has to handle them correctly.

Correctness cannot be guaranteed in the presence of failures or certain use cases. If an error
happens during the commit of a transaction, it is possible that the transaction is only commit-
ted partially, thus violating atomicity and exposing an inconsistent state. Section 7.3 presents
some ideas on how to improve commit-time error handling. Section 5.2.3 discusses several use
cases where inter-process communication leads to deadlocks, and thus violating isolation among
transactions. A problem for isolation with non-transactional code is the inability to reliably
distinguish among open file descriptions, which is described in Section 5.2.4.

1Very informal argument: According to Sections 3.2.1 and 3.2.2, each domain represents a set of page-level data
items; each action can be expressed as a series of page-level reads and writes. The composition of a set of
domains represents the composition of the domains’ page-level data items. Thus, the consistency of a set of
domains can be validated by checking for the non-existence of conflicting page-level operations. The respective
algorithms are well-known [WV01].
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6.1.2 Tests

To test for correctness, a set of test cases has been implemented during the framework’s devel-
opment. The correct results of these tests indicate the soundness of the design and the absence
of major bugs in the implementation.

The tests of memory allocation include allocating and freeing memory from within a trans-
action, freeing memory in a transaction that has been allocated outside of the transaction, and
allocating memory in a transaction that is freed outside of the transaction.

The file-descriptor I/O tests include concurrent I/O on one or more file buffers where the
files are opened and closed inside or outside of the transactions; piping byte streams from non-
transactional code into transactions and vice versa; and copying content from one file descriptor
to another file descriptor, like reading from a file and writing to a pipe or the terminal.

For the file system the correct handling of the local working directory was tested.
The tests of error-handling checked for the correct call of registered error-handler functions

during the commit.

6.2 Standards Compliance

Standards compliance describes the framework’s requirement of making posix interfaces avail-
able to transaction programmers without changing the interfaces’ semantics. This section first
discusses how this is achieved and afterwards summarizes the exceptions.

The posix specification lists 1191 interfaces, of which 232 are currently supported by the
framework. This gives a coverage of approximately 20 percent. The supported functions are
mostly related to memory management, file-descriptor I/O, file-system interaction, string and
memory handling, and math.

The case of transactions is completely handled by the framework. If a transaction is running
irrevocably, the non-transactional implementations are used directly, so the semantics are the
same. The only exception is memory allocation, due to its interference with transactional memory
operations. Allocation is performed immediately. Freeing memory still needs to be deferred. This
is not a problem: According to the posix standard, using heap memory that has been supplied
to a call of free results in undefined behavior. It is therefore compliant to keep the memory
allocated until the end of the transaction.

The other case are revocable transactions. For these to work, all examined interfaces where
classified into one of the three categories for external actions: protected, unprotected, and real
actions. Protected actions execute on memory only. They are supported by wrappers around
the actual non-transactional implementation and handled by the transactional memory system.
Real actions, which can neither be deferred nor compensated, render the transaction irrevocable.
While this happens any previously deferred actions are applied.

The interesting case is the use of unprotected actions, which are either deferred or compen-
sated. By definition, all compensated actions are executed immediately. The support of deferred
actions is provided by the domain concept. As each domain provides information hiding for its
associated resource, so the results of deferred actions can be simulated to give transactional code
the impression that the action took effect.

Such dependencies among deferred or compensated actions are represented by the transaction’s
local history, which contains events of actions that have been executed within the transaction.
Each event in the history refers to exactly one invoked action. The events are ordered by the
conflicts among their actions. This guarantees that a transaction’s deferred actions are applied
and compensated in the correct order.
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The history spans over all domains that are used by a transaction, so it is possible to apply
or compensate actions that depend on the state of more than one domain in the correct order.
An example of this is a call to sync, which flushes the system’s write buffers. Another example
is a domain that represents a global function pointer. The pointer’s function is called by several
deferred actions for allocating memory. These actions depend on the pointer’s value and some
other unrelated domain that represents the actual resource they work on. If the function pointer’s
value is modified (by some setter action) during the transaction, any successive, deferred actions
have to use its latter value. Such inter-domain/inter-action dependencies can be represented.

The the correct interaction of transactional and non-transactional code via weak isolation has
to be assured by the application programmer. The provided components supports this by leaving
all resources in a state that is equivalent to the state of a non-transactional, sequential execution
after the last concurrent transaction has completed. Especially no framework-internal state is
kept that might interfere with non-transactional code, such as internal write buffers or file offsets.

The issue of supporting common practices is hard to argue about, as these practices depend
on the system, the programmer, and the local conventions. All these factors change over time.
The reasoning here is that common practices result from formal compliance with the relevant
standards. If a specific technique is possible with the non-concurrent implementation of an
interface, it is possible with any implementation that exposes the same semantics.

The presented framework achieves standards compliance for most operations, but fails for at
least one important interface and some use cases. The former concerns the inability to distinguish
among open file descriptions if they share the same underlying buffer. This limitation prevents an
application from opening a file multiple times and using it safely within transactional code. The
problem is mostly a result of the shortcomings of the posix specification. Additional information
about the open file description, such as a unique identifier, would solve this. The problem is
discussed in Section 5.2.4.

The other problems relate to the inability to perform certain use cases. When doing inter-
process communication via file buffers, fifos, or sockets; some scenarios are impossible to perform
or result in deadlocks. These problems are caused by irrevocability of transactions, deferral of
write operations, or some combination of both. See Section 5.2.3 for more information.

6.3 Extensibility

Extensibility describes the capability of connecting additional, unrelated components to the
framework. The motivation for this requirement is to allow future extensions to be added without
the need of rewriting the framework’s core.

Extensibility is provided by the framework’s component architecture. Each component en-
capsulates a set of domains and actions, and is responsible for maintaining their global and
transaction-local state.

A transaction’s local history only interacts with the components, but not with any domains or
actions directly. Each component provides the history with the necessary interfaces; such as to
validate domains, apply events, or undo them. As all action-specific information is kept inside
the respective component, the history can hold events of arbitrary actions.

New components can be supported by registering the component’s public interfaces with the
history. When connecting a component, it is provided with functions for interacting with the
rest of the framework, such as adding events to the transaction’s history.

The current implementation already provides several distinct components. Additional compo-
nents can be build by adapting the underlying design principles. The steps to implement a new
component from non-transactional code are roughly to
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1. identify non-transactional resources, such as data structures, which form new domains;

2. identify non-transactional functions, which form new actions;

3. identify consistency constraints for new domains;

4. implement new domains and actions; and

5. provide some component-internal infrastructure to connect domains and actions with the
framework.

For making actions available there exists a code generator that creates most of the necessary
wrapper code. Many cases of adding protected or real actions, which only execute on main
memory or need irrevocability, can be handled completely by the code generator.

Besides the code generator, the implementation contains several data structures that can be
reused. This includes locks, timestamps, and basic memory allocation. The local and global
tree’s of record data structures are build upon generic tree structures. These can be used with
different tree-leaf implementations to provide new types of trees. Most of this code is currently
located in the I/O component, but can be moved to a shared library easily.

The component’s internals mainly consist of code and data structures for translating among
resources, as seen by the transaction programmer, and domain data structures; and for trans-
lating among events and actions. The necessary information can be attached to the memory
transaction via a pointer, or stored in thread-local storage.

Given that the architecture and feature set of posix systems do not change radically with
future revisions, the requirement of extensibility has been achieved.

6.4 Performance

The framework’s performance is strongly influenced by the implementation of its components.
This section presents benchmark results for memory allocation and I/O on file descriptors. The
other components mostly consist of protected or real (irrevocable) actions. Benchmarking these
components would not give much information about the framework.

The tests measure the throughput t in transactions per second. A transaction’s average re-
sponse time r is r = 1/t. The framework does not provide freeness from starvation, so an upper
bound on the response time can not be guaranteed.

All tests are micro-benchmarks. It is not yet possible to come up with some real applications
or workloads because software transactional memory and external actions are still subject to
intensive research, and not used in production systems. Several free database systems, such
as MySQL or PostgreSQL, were examined for conversion to memory transactions with external
actions. However, none was found to be easily convertible. The design of the database systems
is not really compatible with the framework: Databases do their own internal transaction man-
agement, which cannot be replaced by the framework without restructuring large parts of the
database application.

All of the performance measurements were done on a system with 4 AMD Opteron 8346 HE
quad-core processors and 16 GiB of main memory. The system was running Fedora 10 in 64-bit
mode. The benchmark application was a 32-bit binary.

6.4.1 Memory allocation

This section presents some measurements on the performance of transaction-safe memory allo-
cation.
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Methodology

The performance tests are micro-benchmarks that measure the number of transactions per sec-
ond. Each test consists of a set of threads or transactions; each first allocating 32 bytes of heap
memory using malloc, then writing its respective thread ID to it, and afterwards deallocating
the memory using free. This is repeated 10, 100, and 1000 times per transaction. The memory
allocator is the standard memory allocator of glibc 2.9, which comes with the Fedora distribution.

The small number of allocated bytes was chosen to minimize the influence of book-keeping
and page mapping. Each test ran for 60 seconds to minimize the influence of other processes in
the system. The number of bytes covered by TinySTM’s internal locks was set to 4, which is
the size of a machine word. Care was taken to ensure that no sharing of memory words among
transactions happened.

In the transaction-safe setup, the malloc-free pair is implemented by the framework. The
setup denoted TinySTM uses transactional memory, but is not build upon the framework. Instead,
it uses special support of malloc and free that comes with TinySTM. In the non-transactional
scenario each thread was executing the plain system functions.

Results

Figure 6.1 shows the throughput with transactional and non-transactional code. In the non-
transactional case, the throughput roughly scales linearly with the number of concurrent threads.
The minor fluctuations in the curve’s slope, can be explained with the non-deterministic perfor-
mance of computer systems. Both transactional cases, specially depicted in Figure 6.2, do not
scale well. For a small number of threads, roughly up to seven, the throughput climbs linearly
with a slope of one. For higher numbers of threads the throughput either stays at this level or
falls back to lower levels.

When comparing the curves of the transactional cases only, their shapes are similar, but
TinySTM’s implementation has a lower overhead than the framework. This comes of no surprise
as it is a special purpose implementation for handling heap allocations. It does not maintain a
complete, generic history for the transaction.

No conflicts were observed in any of these cases, but the overhead of the transaction is con-
siderable. For example, in the case of 10 iterations, the non-transactional, single-threaded case
has a throughput of 799,419 calls per second, the framework only achieves 167,602 transactions
per second, which is a ratio of 5:1. With 253,429 transactions per second, the implementation
that comes with TinySTM performs better, roughly at a ratio of 3:1.

6.4.2 File-descriptor I/O

Some performance measurements for I/O on regular files are presented in this section. Each
measurement is a micro-benchmark that simulates a specific use case. For legibility all figures
with benchmarks have been moved to the end of the section. The number of aborts for each test
is listed in Table 6.3.

Methodology

Each test consists of a set of threads, all doing pread and pwrite operations on the same file
buffer. Each operation moves 24 bytes from a location in the file buffer to an application buffer
or vice versa. All application buffers are transaction-local. The buffer size of 24 bytes is intended
to reflect the size of an average I/O operation, such as accessing binary values or a single line in
a file.
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Figure 6.1: The throughput of malloc and free. Each transaction repeatedly allocated and
freed memory on the heap. This facility is often used and can become necessary
while converting an action’s arguments to transaction-safe values.
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Each offset is pseudo-randomly computed by a call to rand r. The overhead of rand r has
been measured to be roughly two hundred fifty cycles. Each thread has its own seed value with
an initial value greater or equal to 1, which represents the thread’s logical ID.

In addition to the number of threads, it is possible to set the number of pread-pwrite it-
erations within a transaction. Increasing the number of iterations decreases the influence of
each transaction’s initial setup, but increases the influence of the transaction’s history and the
probability of conflicts among transactions.

Two different file sizes are considered. Access to very small (database) files is simulated by a
file of 1 MiB size; access to larger files is simulated by a file of 100 MiB size. The size of the file
might affect the conflict probability among transactions and the performance of the framework’s
internal data structures.

For concurrency control, each file buffer is divided into records of a fixed size. With many
records of small size, the probability of conflicts among transactions is low; but the costs of record
management, like memory consumption or tree-search overhead, is high. With larger record sizes
the costs of management decrease, but the conflict probability increases. Several record sizes
have been tested. For the presented benchmarks a size of 32 byte per record performed best on
average. This results in 32,768 records for a file of 1 MiB size and 3,276,800 records for a file of
100 MiB size.

Four different strategies for concurrency control are tested. The strategies noundo, 2PL, and
TS are provideed by the framework. noundo switches the transaction to irrevocability, 2PL
implements pessimistic concurrency control by the use of two-phase locking, and TS implements
optimistic concurrency control based on timestamps. The strategy CS does not use the transac-
tional memory system, but serializes by the use of a global lock around the calls to pread and
pwrite. This represents a coarse-grainly locked, non-transactional critical section.

Concurrent I/O on the same file buffer does not scale on current Linux systems. When two or
more threads concurrently access the same file buffer, all but one block. This has been observed
on different file systems, such as tmpfs and XFS.
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For this reason, no actual system calls are performed. The framework has been modified to
busy-wait2 for an operation-specific amount of time, which simulates a file system that scales
linearly with the number of processors. The number of cycles to perform an pread or pwrite
operation depends on the size of the supplied buffer. To minimize the error in the benchmark, the
simulated overhead is kept close to the overhead of an actual system call. Figure 6.3 shows the
overhead of single pread and pwrite operations for various buffer sizes on a tmpfs file system.
The results are approximated using the method of least squares to simulate the system-call
overhead. In the special case of a buffer size of zero, the actually measured value is used.

Not performing actual system calls is problematic in terms of realism of the tests, but allows
to make conclusions about the performance of the presented framework. Otherwise, all mea-
surements were hampered by the file system’s shortcomings. A solution to this problem is the
implementation of a new file system that allows concurrent I/O on the same file buffer.

Transaction phases

Each transaction conists of several phases, which are performed during the transaction’s execu-
tion. The first benchmark examines overhead within these transaction phases. Table 6.1 shows
a detailed measurement of various transaction phases for the single-threaded case of pread and
pwrite operations. The ratio among them is 1:1. For this test the framework uses the actual
system calls.

The columns Strategy and Iterations give the transaction’s concurrency-control strategy and
the number of iterations. The framework’s provided strategies are tested, either for 1, 10, or 100
iterations per transaction.

The column complete gives the average of processor cycles for a complete transaction. The
strategies noundo or 2PL show the smallest overhead. The TS strategy performs worst because
of its high amount of bookkeeping, which is explained in later columns.

The column pread shows the average duration of pread’s execute function, ranging from two
thousand to twenty two thousand cycles. For all strategies, pread takes a significant amount
of cycles. In the case of noundo this is the result of switching to irrevocability. The switch
imposes an overhead on the operation: validation, commit, and acquisition of a reader-writer
lock. For the concurrent cases the overhead comes from an initial setup of the framework’s
internal data structures. This at least involves some checking whether these data structures
are already allocated or not. Later invocations of pread’s execute method do not have these
overheads, so the average duration of the call decreases with the amount of iterations. Another
observation is that the execute method has a significantly higher overhead for the TS strategy
than for any other strategy. This is a result of the additional validation of the file buffer’s records,
which has to be done to prevent the read of inconsistent data.

The average duration of pwrite’s execute method is shown in the column named pwrite. In the
case of the noundo strategy, the write is done immediately. Thus, noundo has a significantly
higher overhead than the other strategies: between three thousand and sixteen thousand two
hundred cycles for noundo, but only a few hundred cycles for the others. In the latter cases,
only internal data structures are updated, but the actual write operation is deferred.

The lock and unlock phases, shown in the respectively named columns, are necessary to guar-
antee atomic write operations for the optimistic TS strategy. All records that were accessed from
within a transaction are locked at the beginning of the commit and unlocked at its end. This
imposes a significant overhead for long transactions, such as around ninety thousand cycles in
the case of 100 iterations.

2Each thread runs on its own core, so busy waiting should not have an influence among threads.
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The other strategies do not need the locking and unlocking phases, and therefore consume
much less cycles. The minor overhead shown here is a result of the implementation, which needs
to call these functions even for non-optimistic domains.

The column denoted validate shows the duration of the transaction’s final validation. This
phase is again only necessary for the strategy TS; the other strategies use some form of locking
for mutual exclusion, which makes validation unnecessary. As with locking any overhead in their
cases is related to implementation details. For TS, the validation overhead increases linearly with
the number of read operations. In the case of 1 iteration it is 705 cycles, of which roughly five
hundred cycles can be attributes to the framework’s core. In the case of 100 iterations validation
accounts of 15,519 cycles.

The table’s column apply shows the overhead of applying a transaction’s updates. noundo
does not defer its writes, so in this case it is almost zero. The other strategies both execute the
same algorithm: They walk through the transaction’s local history and call the apply method
of each event’s action. The overhead increases almost linearly with the length of the history;
from around two thousand two hundred cycles with 1 iteration to roughly two hundred thousand
cycles with 100 iterations.

The updatecc phase, shown in the respectively named column, updates the framework’s data
structures after a transaction has applied all its actions. In the case of noundo it does nothing.
The small overhead is implementation related. For the TS strategy this phase increases the
global timestamps of the written records; for the 2PL strategy it releases all acquired record
locks. For both strategies, the overhead increases linearly with the number of write operations
in the transaction. The TS strategy benefits from the locking and unlocking that is done during
the lock and unlock phases. It can access the records’ data structures normally and therefore
performs much better than the 2PL strategy. With 2PL each record is instead released with the
help of an atomic operation, which takes significantly more time.

The last column shows the overhead of the finish phase, which is executed before a transaction
finally quits. The finish phase is common to all strategies and only involves some minor cleanups.
With around four hundred fifty cycles it is almost negligible.

In general, the strategies noundo and 2PL perform equal most of the time, whereas TS has
a significant overhead. This can be attributed to the extra validation, locking, and unlocking
during the commit; which is necessary for optimistic concurrency control.

Random reads

This benchmark, shown in Figures 6.4 and 6.5, tests the performance of read-only transactions
that access random locations. It simulates use cases with extensive read operations, like searching
a database for specific information. This and all successive benchmarks approximate system calls.

The strategy CS does not scale at all, as only one thread is running at any point in time.
When going from the single-threaded case to multi-threading, there is a measurable drop in
performance. This can be attributed to the increased overhead of maintaining multiple threads,
such as thread switching and additional cache misses. For short transactions, the throughput
drops from 763,071 to 203,971 transactions per second. The more iterations a test contains, the
less impact the additional overhead has.

With the noundo strategy the framework prevents the execution of all transactions, but the
irrevocable one. Thus, the noundo strategy scales equally bad as CS, and does in addition suffer
from transaction-related overhead.

In the single-threaded case, the strategy 2PL performs between twenty five and sixty percent
of CS. The transaction’s overhead is relevant here. In the multi-threaded cases, the overhead is
hidden by the concurrency.
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This gives 2PL an up to two times higher performance for transaction of short and medium
length. The throughput peaks with 13 threads, at 407,916 short-length transactions per second;
respectively with 3 threads and 104,298 medium-length transactions per second. It stays roughly
at these levels when the number of threads increases towards 16. For long transactions, the
performance of 2PL is not that good. With 4 threads, its throughput peaks at 15,665 transactions
per second, which is one and a half times better than the CS. Afterwards 2PL decreases to CS’s
level around ten thousand transactions. There are no conflicts if values are only read and no
aborts happen. Still the throughput does not scale linearly with the number of threads. There
is always some setup involved when starting a transaction. At least the transaction has to find
the file’s global data structures. The search involves some internal locking. The framework also
maintains an internal lock for each record. Acquiring and releasing these locks affects other
transaction, which use the same memory bus.

For short transactions, the optimistic strategy TS performs similar to 2PL. It reaches its peak
at 435,999 transactions per second with 9 concurrent threads. It stays at this level when more
threads are added. With the increase in transaction length, the performance of TS decreases
significantly. For medium-length transactions, it performs below fifty thousand transactions per
second; a level close to CS. For long transactions it performs around four thousand transac-
tions per second, which is near noundo. The decrease in throughput can be attributed to the
increased amount of necessary validations. Also, during the commit of a transaction, the trans-
action’s records are locked to guarantee the commit’s atomicity. As described in Section 5.2.5 all
records are stored in the leafs of a tree. Two adjacent records are likely to end up in the same
leaf structure. The locking of records is implemented by locking the complete leaf structures.
This reduces the time and memory overhead; but temporarily blocks concurrent, but unrelated,
transactions that want to commit to a nearby record’s location in the file buffer. Locking is not
strictly necessary for read-only transactions. A future optimization could explicitly check for for
this case and leave the locking out.

When performing these tests on a file of 100 MiB size, similar results are retrieved. The only
difference is the performance of TS. For short and medium-length transactions, the throughput
is miserable compared to the test on a small file. For long transactions the throughput is better
than for small files. This again might be attributed to the internal handling of records. The
framework tries to reuse internal data structures once they are initialized. For example, a record’s
timestamp is kept around even though the actual file might have been closed, and reused for
the next file. Refer to Section 5.2 for a more detailed discussion. With larger file sizes there are
more records and it is less likely that a transaction hits previously allocated data structures; thus
the framework’s overhead increases. The effect can be seen when comparing the single-threaded
cases, where no distorting contention happens. For TS the throughput of long transactions per
second is 4168 with small files, whereas it is only 822 with large files. For transactions of short
and medium length it is less possible to reuse internal data structures. For long transactions,
less reuse also happens, but results in less contention on component-internal locks than for short
files. This in turn yields better performance.

Sequential reads

Figures 6.6 and 6.7 show the performance of sequential reads. This benchmark simulates use
cases, such as paging in parts of a database, where a transaction reads large amounts of consec-
utive data from a file.

For short transactions on small files, no differences to reads at random offsets can be observed:
a sequential read at a single offset is the same as a random read.
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For transactions of medium and long length, the strategy TS yields a much better throughput
for reading at consecutive offsets than for reads at random offsets. This is a result of the much
shorter locking phase and the less interference with other transactions. Again this is a side effect
of the the leaf-based locking. Assume 10 read operations in a transaction. In the case of reading
at 10 random offsets, each record is likely to be located in a different tree leaf. This results in the
locking of 10 leafs and possibly blocks 10 concurrent, but otherwise independent transactions.
In the case of 10 reads at consecutive offsets, only one or two leafs have to be locked, since each
leaf contains several records at once. This minimized interference with other transactions.

The other strategies do not show any significant difference to the case of reading at random
offsets. For these strategies the layout of the record tree is not that much important: 2PL locks
individual records, whereas noundo and CS do not use the record tree at all.

For large files, the benchmark shows similar results as for small files. The only significant
difference between random and consecutive reads is again in the behavior of TS, which now
scales much better for long transactions. This is caused by the same implementation details that
have been described above.

Random writes

This benchmark simulates use cases with extensive write operations at random offsets, such as
synchronizing updates to a database with a file. Figures 6.8 and 6.10 show the detailed results.

The strategies CS and noundo do not scale at all. The strategies TS and 2PL do scale for
some setups. For transactions of short and medium length, 2PL scales up to 7 threads; where
it peaks at 432,157 transactions per second, respective 105,827 transactions per second. It stays
roughly on that level for short transactions, but decreases for medium-length transactions, due
to conflicts. Similar behavior can be observed for long transactions, where 2PL peaks with 3
threads at 8012 transactions per second; and afterwards decreases against zero. With TS, the
main difference to reading transactions is the lack of necessary validation. Therefore, no conflicts
are observed and the strategy should scale very well when compared to the pessimistic 2PL. Even
though no conflicts happen, TS does not scale well. For short transactions it behaves similar to
2PL. For medium and long transactions, TS behaves like CS or worse.

The mediocre throughput of the TS strategy can be explained with the framework’s internal
setup. In the original adjustment each element in the record tree contains 29 child elements: each
node contains 512 nodes or leafs and each leaf contains 512 records. Figure 6.9 shows the same
benchmark with a different adjustment of the internal tree of record. For this test the number of
child elements has been reduced to 25 = 32. This leads to deeper trees with longer search time;
but also reduces contention within the global tree and on individual leaf locks, as each lock now
protects a smaller amount of records.

The purpose of this change is to illustrate the influence of the framework’s internal parameters
on the performance. For short transactions, the modified version has a clearly smaller through-
put. It reaches at most two hundred thousand transactions per second: only half on the original
setup. This can be explained with the higher overhead of searching through the record tree. The
tree’s depth has increased, so more elements need to be traversed. For transactions of medium
size the situation is reversed: The original setup performs only half as good as the modified setup,
which peaks around ninety thousand transactions per second at 11 threads. The less amount of
contention on the leafs’ internal locks allows for scaling up to this level and afterwards keeping
the throughput there. No differences can be observed for long transactions. This case seems to
be influenced by other factors than the record tree’s setup.

Back to the original setup, when working on large files, no major difference in the general
behavior of CS, noundo, and 2PL are observable.
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Due to less conflicts, the latter performs better for long transactions. Its peak throughput
increases from 8012 transactions per second to 12,316 transactions per second. The TS strategy
performs similar as for sequential reads. The throughput is again hampered by the absent reuse
of internal data structures. Only for long transactions the throughput is higher than with small
files, since the reduced internal contention enables better performance.

Sequential writes

This file-I/O benchmark is shown in Figures 6.11 and 6.12. It simulates use cases, such as paging
out parts of a database, where a transaction writes large amounts of consecutive data to a file.

For short transactions on small files sequential writes behave similar to random writes, as they
are both the same. For medium-length and long transactions, 2PL also behaves as with random
writes, but with 15,078 transactions per second its peak throughput is twice as high. This can
be attributed to the better locality of operations at consecutive offsets. Also, when writing at
adjacent offsets, the framework’s I/O component merges consecutive write actions into one single
operation. This save the overhead of all but one system call. The strategy TS performs much
better than with writes at random offsets. As with reads this can be attributed to the less
contentious internal locking during the transaction’s commit. The merging of write operations
is applied for TS as well.

For large files, no difference can be seen for CS, noundo, and 2PL. TS does not perform as
well as for small files. Except for long transactions it shows the same performs as with random
offsets. Its throughput increases to 11,234 with 10 threads, where it is roughly twice as high as
CS and 2PL. Afterwards the throughput decreases again.

Random reads and writes, ratio 1:1

Figure 6.13 shows the performance of a benchmark with a read-write ratio of 1:1 for a file size of
a 1 MiB. This simulates the update of independent entries of a database, like multiplying each
by a specific value.

As in the tests before, the strategies CS and noundo do not scale. noundo again suffers
from the common transaction overhead. Compared to CS, 2PL achieves an up to four times
higher throughput for transactions of short and medium length. It peaks at 5 threads, with
355,334 short-length transactions per second and 60,345 medium-length transactions per second,
then decreases, and stays roughly constant for more than 8 threads. For long transactions, the
performance of 2PL is not that good. Around 3 threads its throughput peaks, with 4497 trans-
actions per second, which is slightly better than CS. Afterwards decreases to 1292 transactions
per second, which is only one third of CS.

For short transactions, TS scales with the number of threads, but performs worse than 2PL.
With 8 threads, it reaches its peak at 292,738 transactions per second, which is similar throughput
as 2PL. It stays at this level when more processors are added.

With the increase in transaction length, the performance of TS decreases significantly. For
medium-length transactions, it performs somewhere between twenty and thirty thousand trans-
actions per second; a level close to CS. For long transactions it performs between one thousand
and two thousand transactions per second, which is similar to the other transactional strategies.
The decrease in throughput can again be attributed to the increased amount of conflicts, the
higher amount of necessary validations, and the more contentious internal locking.

The same tests have been performed for a file size of 100 MiB. The results are shown in
Figure 6.14. In general the results are the same as for the other tests: For the strategies of CS,
noundo, and 2PL no significant differences can be observed, whereas TS performs much worse
for transactions of short and medium length, but better for long transactions.
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Random reads and writes, ratio n:1

Benchmarks with different read-write ratios are shown in Figures 6.15, 6.16, 6.17, 6.18, 6.19,
6.20. In these cases the number of writes is 33, 20, and 11 percent. This simulates the update of
constraint database entries, such as recomputing one entry from several others.

The trends of all graphs are similar to the case of 50 percent writes. The major difference
among these tests is the decrease in throughput that comes with the increase in reads per
transactions. This can be attributed to the additional processing in general and the increased
number of locking, validation, and conflicts that arise from these additional reads.

Summary

With the given setup, the performance measurements often show that the framework scales up
to a certain amount of concurrent transactions, but then the throughput stalls or decreases
again. This can typically be explained by the increasing amount of conflicts among transactions
and internal contention. The framework can outperform non-transactional code for short and
medium-length transactions, but rarely does with long transactions.

The strategy 2PL shows some strange behavior with reading transactions of medium and long
size. Its throughput first scales with the number of concurrent transactions. When reaching
around seven transactions it drops to values near or below the single-threaded case. For higher
numbers of concurrent transactions the throughput increases again. The effect is particularly vis-
ible in Figures 6.4, 6.5, 6.14, and 6.20. Its cause is currently unknown. The effect is independent
of the file size. It is also not related to the number of aborts, as the random-read tests do not
generate aborts at all. The file offsets are generated pseudo-randomly via rand r. To eliminate
certain sequences of random numbers that yield a high amount of interference among threads,
some tests were tried with different initial seed values. The results show the same anomaly, so the
effect seems unrelated to the file-offset generation and framework-internal interference. Possibly
this phenomenon is caused by Linux’ thread scheduling.

At the moment the strategy TS seems useless for buffer I/O. It rarely outperforms 2PL for the
tested setup, notably in Figures 6.4 and 6.12. Otherwise, it performs worse. Maybe a scenario
with heavy write contention, and thus many false conflicts with the strategy 2PL, could benefit
by using TS. A possible use case might be fifo writes, where validation is not necessary and
2PL generates many false conflicts.

6.5 General considerations

Having presented an evaluation of the framework with regard to the specified design goals, this
section discusses Taglibc with respect to the time complexity of its underlying algorithms and
the number of code lines. These metrics do not provide objective results, but give an estimate
of the software’s performance, design, and bug count.

Time complexity

Time complexity describes the increase in computation steps when the input n increases linearly.
In the case of the framework, n is the number of actions that are contained in a transaction’s
local history.

Before executing its first action, a component has to register itself with the framework. This
has to be done only once, so its complexity is O(1). While the action is executed, it can append
events to the transaction’s history. The log is reallocated and the event is copied to its end.
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Component Lines of code

Core (log and error handling) 1,241
Allocator 334
File-descriptor I/O 10,099
File system 717
Others 266
Entry-point declarations 232

Σ 12,889

Table 6.2: The number of lines of C code and entry-point declarations in various components.

The framework’s internal allocation function allocates with respect to powers of two, so the
reallocation has a complexity of O(log n).3 The copy operation is done for every action, so its
has a complexity of O(n). The execution of actions itself has an overhead of O(n).

However, when using optimistic domains, it is necessary to re-validate their state after each
executed (read) operation. The overhead of the validation step can hardly be estimated. Its
input m is not the number of actions, but the number of data items to validate. This depends on
the domains used by a transaction and the actions executed on them. For example, validating
the record timestamps of a file buffer is likely to have a higher complexity than testing a single
value. The worst case is a large amount of optimistic read operations on a large number of
domains. The validation has to be done after each read operation, so the execution complexity
is O(n × m). Assuming that each action yields one necessary validation, m = n, a complete
execution has a complexity of O(n2).

When committing a transaction, all optimistic domains have to be locked to guarantee cor-
rectness. To prevent deadlocks, the locking has to follow a canonical order. If each executed
action works on an individual value, the number of values is n. With a good sorting algorithm,
the complexity of sorting the values to a canonical order is O(n log n).

Afterwards all domains are locked, each is validated, the transaction’s history is either applied
or undone, and each domain is unlocked again. Each of these steps has an inherent complexity
of O(n).

To summarize, the complexity strongly depends on the validation step. If validation is not nec-
essary, the framework’s implementation imposes a complexity of O(n). If validation is necessary,
the complexity increases up to O(n2).

Size

Size is measured in lines of code. The number of code lines of Taglibc and its components is
shown in Table 6.2.4

The core framework, which consists of the event log and the error-handling infrastructure,
contains only 1,241 lines of code. By far the largest part is the component for file-descriptor
I/O with 10,099 lines of code. This comes of no surprise as it provides the most actions and
incorporates interfaces for socket support as well. It also contains quite a lot of internal data
structures. The size of other components, such as the memory allocator and the file system, is
almost negligible with only a few hundred code lines each.
3The framework’s allocator uses the system’s malloc implementation. Although Figure 6.1 indicates otherwise,

this might have an influence here.
4These statistics have been generated using David A. Wheeler’s ’SLOCCount’.
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Most of Taglibc’s entry points are generated automatically. Their declarations account of
another 232 lines of code. The complete package with entry-point declarations has been measured
with 12,889 lines of code.

74



0

200000

400000

600000

800000

1e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

1 pread operation per transaction

noundo

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3
2PL

+ + + +
+ + + +

+ + + + + + + +

+
TS

2
2

2
2

2 2 2 2 2 2 2 2 2 2 2 2

2
CS

×

× × × × × × × × × × × × × × ×

×

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

10 pread operations per transaction

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

+

+
+

+

+ +

+

+
+ +

+ + + + + +

2
2

2
2 2

2
2 2 2 2 2 2 2 2 2 2

×

× × × × × × × × × × ×
×
× ×

×

0
2000
4000
6000
8000

10000
12000
14000
16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

100 pread operations per transaction

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

+

+

+ +

+
+

+

+ + + + + + + + +

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

×
× × × × × × × × × × × × × × ×

Figure 6.4: Reads at random offsets in a file of 1 MiB size. Each transaction consists of a number
of pread operations, which operate at random offsets within the file. This simulates
reads of sole data items, such as extracting specific entries from a database file.
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Figure 6.5: Reads at random offsets in a file of 100 MiB size. Each transaction consists of a
number of pread operations, which operate at random offsets within the file. This
simulates reads of sole data items, such as extracting specific entries from a database
file.
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Figure 6.6: Reads at sequential offsets in a file of 1 MiB file size. Each transaction consists of
a number of pread operations, which operate at sequential offsets from a random
initial value. This simulates reads of constrained data items, such as reconstructing
memory content from a database dump.
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Figure 6.7: Reads at sequential offsets in a file of 100 MiB file size. Each transaction consists
of a number of pread operations, which operate at sequential offsets from a random
initial value. This simulates reads of constrained data items, such as reconstructing
memory content from a database dump.
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Figure 6.8: Writes at random offset in a file of 1 MiB file size. Each transaction consists of a
number of pwrite operations, which operate at random offsets within the file. This
simulates writes of changed data items, such as synchronizing updates to a database
with a file.
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Figure 6.9: Writes at random offset in a file of 1 MiB file size. Both transactions use the optimistic
strategy TS, but each has a different internal setup of the record tree.
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Figure 6.10: Writes at random offset in a file of 100 MiB file size. Each transaction consists of a
number of pwrite operations, which operate at random offsets within the file. This
simulates writes of changed data items, such as synchronizing updates to a database
with a file.
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Figure 6.11: Writes at sequential offsets in a file of 1 MiB size. Each transaction consists of a
number of pwrite operations, which operate at sequential offsets from a random
initial value. This simulates writes of constrained data items, such as dumping the
content of memory to a file.
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Figure 6.12: Writes at sequential offsets in a file of 100 MiB size. Each transaction consists of
a number of pwrite operations, which operate at sequential offsets from a random
initial value. This simulates writes of constrained data items, such as dumping the
content of memory to a file.
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Figure 6.13: Reads and writes at random offsets in a file of 1 MiB size. Each transaction consists
of a number of read-write cycles. Each cycle consists of one pread operation at a
random offset within the file, and one pwrite operation at the same offset. This
simulates updates of independent data items, such as multiplying a set of database
entries by some fixed value.
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Figure 6.14: Reads and writes at random offsets in a file of 100 MiB size. Each transaction
consists of a number of read-write cycles. Each cycle consists of one pread operation
at a random offset within the file, and one pwrite operation at the same offset. This
simulates updates of independent data items, such as multiplying a set of database
entries by some fixed value.
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Figure 6.15: Reads and writes at random offsets in a file of 1 MiB size. Each transaction consists
of a number of read-write cycles. Each cycle consists of two pread operations at
random offsets within the file, and one pwrite operation at the last offset. This
simulates updates of constrained data items, like recomputing a set of database
entries from others.

86



0

100000

200000

300000

400000

500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

1 pread-pwrite cycle per transaction

noundo

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3
2PL

+

+
+

+ +

+
+

+
+ + + + + + + +

+
TS

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2
CS

×

× × × × × × × × × × × × × × ×

×

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

10 pread-pwrite cycles per transaction

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

+

+

+ +
+

+ + +

+ + + + + + + +

2 2 2 2 2 2 2 2
2 2 2 2

2
2 2 2

×
× × × × × × × × × × × × × × ×

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

100 pread-pwrite cycles per transaction

3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

+

+

+
+

+

+
+

+ +
+ + + + + + +

2
2

2
2

2
2 2 2 2 2 2 2 2 2 2 2

× × × × × × × × × × × × × × × ×

Figure 6.16: Reads and writes at random offsets in a file of 100 MiB size. Each transaction
consists of a number of read-write cycles. Each cycle consists of two pread operations
at random offsets within the file, and one pwrite operation at the last offset. This
simulates updates of constrained data items, such as recomputing a set of database
entries from others.

87



0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

1 pread-pwrite cycle per transaction

noundo

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3
2PL

+

+
+ +

+
+ +

+

+ + + + + + + +

+
TS

2
2

2
2

2 2
2 2 2

2 2 2 2

2 2 2

2
CS

×
× × × × × × × × × × × × × × ×

×

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

10 pread-pwrite cycles per transaction

3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

+

+
+ +

+

+
+ + + + + + + + + +

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

× × × × × × × × × × × × × × × ×

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

Number of threads

100 pread-pwrite cycles per transaction

3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

+
+ +

+
+ + + + + + + + + + + +

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

× ×
×
× ×

×
× × × × ×

× ×
× × ×

Figure 6.17: Reads and writes at random offsets in a file of 1 MiB size. Each transaction consists
of a number of read-write cycles. Each cycle consists of four pread operations at
random offsets within the file, and one pwrite operation at the last offset. This
simulates updates of constrained data items, such as recomputing a set of database
entries from others.
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Figure 6.18: Reads and writes at random offsets in a file of 100 MiB size. Each transaction con-
sists of a number of read-write cycles. Each cycle consists of four pread operations
at random offsets within the file, and one pwrite operation at the last offset. This
simulates updates of constrained data items, such as recomputing a set of database
entries from others.
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Figure 6.19: Reads and writes at random offsets in a file of 1 MiB size. Each transaction consists
of a number of read-write cycles. Each cycle consists of eight pread operations at
random offsets within the file, and one pwrite operation at the last offset. This
simulates updates of constrained data items, such as recomputing a set of database
entries from others.
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Figure 6.20: Reads and writes at random offsets in a file of 100 MiB size. Each transaction con-
sists of a number of read-write cycles. Each cycle consists of eight pread operations
at random offsets within the file, and one pwrite operation at the last offset. This
simulates updates of constrained data items, such as recomputing a set of database
entries from others.
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Benchmark Iterations Threads Strategy
1 MiB 100 MiB

noundo 2PL TS noundo 2PL TS

Random
reads

1

1 0 0 0 0 0 0
2 1,368,863 0 0 1,405,091 0 0
3 1,888,243 0 0 1,689,038 0 0
4 165,331 0 0 129,920 0 0
5 1,400,280 0 0 1,524,632 0 0
6 2,479,083 0 0 2,500,926 0 0
7 3,177,490 0 0 3,295,052 0 0
8 3,829,704 0 0 3,666,054 0 0
9 4,429,858 0 0 4,212,558 0 0
10 4,421,658 0 0 4,568,289 0 0
11 4,751,481 0 0 4,660,336 0 0
12 5,034,354 0 0 5,170,851 0 0
13 5,267,059 0 0 5,724,244 0 0
14 5,593,215 0 0 5,436,942 0 0
15 5,510,875 0 0 5,614,483 0 0
16 5,798,994 43,273,203 0 5,827,566 0 0

10

1 0 0 0 0 0 0
2 775,129 0 0 866,083 0 0
3 1,205,655 0 0 1,287,990 0 0
4 183,264 0 0 131,242 0 0
5 926,659 0 0 878,361 0 0
6 1,628,806 0 0 1,550,021 0 0
7 2,107,922 0 0 2,143,091 0 0
8 2,691,158 0 0 2,635,803 0 0
9 3,225,610 0 0 3,075,167 0 0
10 3,455,679 0 0 3,397,746 0 0
11 3,922,657 0 0 3,864,190 0 0
12 4,436,169 0 0 3,878,818 0 0
13 4,364,779 0 0 4,593,733 0 0
14 4,291,865 0 0 4,528,308 0 0
15 4,333,283 0 0 4,429,694 0 0
16 4,493,143 0 0 4,353,989 0 0

100

1 0 0 0 0 0 0
2 13,057 0 0 17,252 0 0
3 270,926 0 0 282,858 0 0
4 45,602 0 0 25,464 0 0
5 184,704 0 0 187,245 0 0
6 363,796 0 0 358,456 0 0
7 541,082 0 0 515,041 0 0
8 661,257 0 0 685,194 0 0
9 790,218 0 0 805,488 0 0
10 870,580 0 0 942,928 0 0
11 1,079,957 0 0 1,156,694 0 0
12 1,036,805 0 0 1,398,276 0 0
13 1,317,591 0 0 1,290,121 0 0
14 1,594,134 0 0 1,538,163 0 0
15 1,659,902 0 60,201,997 1,681,053 0 0
16 1,526,326 0 0 1,800,116 0 0
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Sequential
reads

1

1 0 0 0 0 0 0
2 1,354,532 0 0 1,327,062 0 0
3 1,636,651 0 0 1,648,954 0 0
4 95,485 0 0 106,620 0 0
5 1,523,577 0 0 1,555,571 0 0
6 2,461,918 0 0 2,456,449 0 0
7 3,284,288 0 0 3,300,451 0 0
8 3,697,960 0 0 3,742,585 0 0
9 4,207,175 0 0 4,030,179 0 0
10 4,859,563 0 0 4,594,921 0 0
11 4,831,609 0 0 4,808,384 0 0
12 5,235,798 0 0 5,086,031 0 0
13 5,284,014 0 0 5,392,329 0 0
14 5,358,105 0 0 5,536,072 0 0
15 5,569,366 0 0 5,742,928 0 0
16 5,639,888 0 0 5,809,279 0 0

10

1 0 0 0 0 0 0
2 822,340 0 0 825,906 0 0
3 1,156,787 0 0 1,164,380 0 0
4 71,289 0 0 80,804 0 0
5 874,972 0 0 951,545 0 0
6 1,493,383 0 0 1,550,742 0 0
7 2,126,416 0 0 2,199,627 0 0
8 2,660,015 0 0 2,746,637 0 0
9 2,964,155 0 0 3,116,196 0 0
10 3,632,380 0 0 3,574,378 0 0
11 4,023,344 0 0 3,954,892 0 0
12 4,227,609 0 0 4,058,288 0 0
13 4,252,239 0 0 4,380,428 0 0
14 4,218,888 0 0 4,273,656 0 0
15 4,341,184 0 0 4,374,943 0 0
16 4,338,484 0 0 4,341,712 0 0

100

1 0 0 0 0 0 0
2 5,685 0 0 13,740 0 0
3 339,439 0 0 263,215 0 0
4 46,688 0 0 121,131 0 0
5 269,679 0 0 177,093 0 0
6 429,881 0 0 335,227 0 0
7 649,603 0 0 489,579 0 0
8 820,695 0 0 651,173 0 0
9 996,206 0 0 814,498 0 0
10 1,123,269 0 0 918,717 0 0
11 1,411,402 0 0 1,041,298 0 0
12 1,540,334 0 0 1,258,166 0 0
13 1,438,615 0 0 1,366,741 0 0
14 1,918,645 0 0 1,572,023 0 0
15 2,026,377 0 0 1,639,859 0 0
16 2,050,457 0 0 1,560,311 0 0

1

1 0 0 0 0 0 0
2 1,297,688 139 0 1,267,875 1 0
3 1,635,911 192 0 1,658,331 1 0
4 211,372 487 0 272,279 7 0
5 1,302,774 523 0 1,235,675 8 0
6 2,300,843 747 0 2,256,382 8 0
7 3,153,365 1,911 0 3,155,879 8 0
8 3,688,506 3,086 0 3,820,377 5 0
9 4,196,763 2,560 0 4,328,151 14 0
10 4,577,331 1,721 0 4,929,505 9 0
11 4,637,316 2,423 0 4,946,625 8 0
12 5,111,689 1,978 0 5,330,427 12 0
13 5,330,238 3,373 0 5,188,429 62 0
14 5,616,083 1,521 0 5,453,466 8 0
15 5,452,041 1,500 0 5,783,122 18 0
16 6,151,253 2,026 0 5,986,577 8 0
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Random
writes

10

1 0 0 0 0 0 0
2 718,282 16,589 0 678,011 138 0
3 1,045,866 45,290 0 1,046,739 294 0
4 223,613 69,002 0 263,837 590 0
5 786,799 79,733 0 808,561 661 0
6 1,283,523 87,621 0 1,281,100 888 0
7 1,856,604 109,808 0 1,806,870 1,024 0
8 2,285,947 109,985 0 2,203,997 1,007 0
9 2,793,096 112,417 0 2,792,321 1,085 0
10 2,968,317 115,537 0 3,096,343 1,042 0
11 3,406,303 139,908 0 3,465,656 1,011 0
12 3,968,713 196,810 0 3,411,472 19,383 0
13 3,974,968 230,227 0 4,016,217 27,330 0
14 4,455,098 177,119 0 4,213,841 9,694 0
15 4,464,066 319,324 0 4,354,117 39,070 0
16 4,522,599 367,616 0 4,553,869 3,657 0

100

1 0 0 0 0 0 0
2 9,784 315,442 0 6,870 2,070 0
3 196,670 775,580 0 198,755 7,110 0
4 29,554 1,066,570 0 74,272 12,497 0
5 186,734 1,252,146 0 124,423 17,499 0
6 249,933 1,326,765 0 242,082 20,510 0
7 385,970 1,175,560 0 358,435 18,741 0
8 499,406 1,009,857 0 500,545 20,279 0
9 627,754 973,959 0 643,509 15,089 0
10 738,307 815,034 0 728,197 22,700 0
11 890,951 1,013,173 0 987,373 21,002 0
12 842,527 1,011,237 0 835,068 51,320 0
13 1,192,006 1,125,549 0 684,354 37,672 0
14 1,185,632 1,049,067 0 1,188,343 162,706 0
15 1,237,940 943,982 0 1,147,691 98,019 0
16 1,496,284 959,438 0 1,153,450 93,164 0

1

1 0 0 0 0 0 0
2 1,301,581 71 0 1,262,470 2 0
3 1,578,663 203 0 1,631,199 2 0
4 260,562 464 0 232,137 9 0
5 1,384,180 1,511 0 1,375,489 7 0
6 2,287,836 2,615 0 2,360,793 8 0
7 3,167,712 1,796 0 3,183,283 10 0
8 3,791,915 2,138 0 3,788,499 13 0
9 4,377,496 1,029 0 4,137,109 15 0
10 4,596,318 2,528 0 4,157,795 4 0
11 4,753,568 3,003 0 4,861,491 18 0
12 4,987,534 2,175 0 4,908,018 11 0
13 5,163,576 2,488 0 5,227,493 14 0
14 5,403,482 3,632 0 5,330,612 15 0
15 5,452,499 2,488 0 5,455,554 5 0
16 5,844,467 2,318 0 5,543,060 9 0

Sequential
writes

10

1 0 0 0 0 0 0
2 760,052 3,566 0 739,018 19 0
3 1,093,101 7,224 0 1,063,675 44 0
4 106,342 11,684 0 155,626 68 0
5 809,694 15,318 0 769,205 170 0
6 1,450,282 17,556 0 1,429,460 130 0
7 2,040,076 21,787 0 2,003,567 165 0
8 2,560,720 25,564 0 2,439,702 195 0
9 2,847,879 34,076 0 2,800,605 278 0
10 3,321,462 44,960 0 3,167,860 357 0
11 3,257,326 47,184 0 3,708,773 491 0
12 3,896,505 72,208 0 4,010,059 499 0
13 4,095,354 75,569 0 4,142,839 515 0
14 4,303,702 83,929 0 4,368,953 533 0
15 4,431,367 76,791 0 4,216,048 1,293 0
16 4,305,791 115,325 0 4,231,973 1,109 0
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100

1 0 0 0 0 0 0
2 10,486 13,694 0 9,276 217 0
3 226,506 41,648 0 215,925 428 0
4 30,579 72,038 0 22,921 712 0
5 152,941 87,625 0 155,879 893 0
6 298,085 92,745 0 292,340 789 0
7 424,228 110,625 0 433,054 899 0
8 580,164 152,609 0 561,530 1,316 0
9 700,993 250,689 0 677,116 1,220 0
10 772,338 393,164 0 758,865 2,788 0
11 920,734 443,800 0 912,110 3,277 0
12 1,146,131 640,228 0 1,028,514 4,948 0
13 823,586 727,952 0 870,656 6,551 0
14 1,293,867 720,587 0 1,223,505 8,592 0
15 1,476,060 670,550 0 1,435,192 8,001 0
16 1,453,444 618,926 0 1,611,690 7,081 0

Reads-
writes,
1:1

1

1 0 0 0 0 0 0
2 1,141,970 224 18 1,193,432 2 0
3 1,554,494 466 130 1,564,804 2 0
4 137,831 1,809 251 148,079 6 0
5 1,287,360 2,372 461 1,318,034 24 0
6 2,200,018 2,743 648 2,163,919 29 0
7 2,904,627 2,717 707 3,041,322 26 0
8 3,590,092 3,186 1,075 3,572,417 25 0
9 3,915,724 3,469 1,092 3,978,713 27 0
10 4,290,581 3,523 1,362 4,305,103 37 0
11 4,657,306 4,191 1,463 4,544,872 28 0
12 4,889,613 4,802 1,720 4,676,063 37 0
13 4,913,999 5,100 1,724 4,673,940 36 0
14 4,926,720 37,048 2,056 5,060,792 41 0
15 5,150,946 6,000 2,070 5,282,921 70 0
16 5,380,476 56,366,125 2,368 5,580,536 80 0

10

1 0 0 0 0 0 0
2 494,316 16,495 1,571 498,764 117 1
3 848,140 26,790 3,177 851,541 258 2
4 139,539 37,747 5,177 324,062 294 4
5 506,458 52,278 7,586 647,269 557 5
6 1,057,519 57,925 10,429 1,028,398 538 2
7 1,413,232 36,642 12,759 1,415,451 309 6
8 1,846,076 64,627 15,311 1,856,413 431 9
9 2,235,933 74,050 18,174 2,183,579 446 21
10 2,356,377 74,938 20,861 2,327,950 731 8
11 2,894,605 87,864 22,918 2,546,487 86,386,150 19
12 3,150,811 96,937 25,670 3,308,247 880 35
13 3,321,340 104,387 27,843 3,337,866 1,102 28
14 3,542,068 111,673 30,288 3,238,058 1,035 42
15 4,039,059 124,404 32,642 3,786,180 1,144 36
16 4,072,205 132,186 35,348 3,970,927 90,755,868 55

100

1 0 0 0 0 0 0
2 4,635 191,277 17,650 4,417 2,140 81
3 36,012 408,700 32,336 34,037 4,853 188
4 8,939 541,126 45,129 24,567 8,108 400
5 86,611 445,513 56,285 85,483 8,389 632
6 166,649 401,778 60,943 172,449 5,256 714
7 253,490 673,402 66,066 254,966 4,840 994
8 330,608 517,132 68,203 340,776 5,414 1,214
9 413,582 671,651 64,568,606 431,853 10,018 1,533
10 472,086 693,287 76,705 484,358 9,911 1,923
11 554,669 811,423 82,741 517,400 11,985 2,060
12 495,162 877,934 86,282 658,021 13,741 2,436
13 726,835 907,001 91,059 732,701 13,885 2,496
14 827,757 972,041 94,787 679,256 16,601 2,729
15 698,791 1,055,213 98,396 765,159 17,155 3,214
16 835,568 1,118,883 101,292 901,439 18,298 3,496
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Reads-
writes,
2:1

1

1 0 0 0 0 0 0
2 1,072,104 332 59 1,125,968 4 0
3 1,480,159 1,308 226 1,525,444 1,008 0
4 107,882 2,036 457 123,212 21 0
5 1,209,490 3,182 820 1,239,872 21 0
6 2,156,045 2,423 1,112 2,186,030 24 0
7 2,844,787 4,231 1,440 2,811,662 31 0
8 3,453,401 44,008,400 1,678 3,260,134 26 0
9 3,719,433 4,628 2,087 3,891,614 30 0
10 4,149,597 4,704 84,138,916 4,114,232 49 0
11 4,236,925 6,078 2,664 4,329,414 99 0
12 4,797,115 6,803 3,063 4,526,456 56 0
13 4,760,991 6,986 3,300 4,627,566 71 0
14 4,868,593 7,022 3,445 4,864,668 52 0
15 5,012,035 65,493,604 3,739 5,062,356 53 0
16 5,643,145 10,827 4,143 5,233,394 74 1

10

1 0 0 0 0 0 0
2 94,324 19,229 1,959 196,363 185 1
3 627,562 46,107 4,328 671,225 383 2
4 53,321 61,111 7,030 73,165 561 5
5 456,043 58,320 10,021 445,405 923 14
6 843,340 62,133 12,789 833,500 527 17
7 1,207,245 84,353 15,776 1,171,026 495 29
8 1,434,600 61,094 18,811 1,560,044 583 23
9 1,803,746 111,295 22,488 1,758,513 1,011 48
10 2,040,950 132,286 25,221 1,968,687 1,307 68
11 2,178,019 155,061 29,286 1,991,989 1,474 73
12 2,555,733 172,010 31,943 2,618,062 1,509 90
13 2,924,076 183,390 35,229 2,754,254 1,697 75,587,770
14 2,767,402 209,074 37,878 2,869,926 1,963 99
15 3,222,874 230,981 40,931 2,947,181 2,365 107
16 3,553,923 76,094,616 43,921 3,260,537 2,341 144

100

1 0 0 0 0 0 0
2 3,505 290,114 17,662 2,812 3,058 133
3 17,593 543,198 36,221 112,653 9,090 290
4 4,838 638,420 49,361 19,812 14,038 501
5 103,757 565,752 60,059 61,438 11,599 832
6 119,770 441,789 64,958 121,237 8,593 921
7 172,552 449,690 63,296 178,772 12,368 1,157
8 239,339 481,840 67,110 238,132 14,352 1,509
9 290,620 865,749 70,873 302,119 14,610 1,749
10 358,802 879,304 71,100 353,623 20,215 2,073
11 366,251 949,060 76,001 332,818 22,683 74,610,165
12 468,589 1,061,951 78,638 477,181 24,926 2,750
13 510,885 1,120,637 82,043 489,945 90,165,552 3,026
14 601,938 1,173,677 83,699 476,728 55,277 3,287
15 582,573 1,207,046 86,548 574,289 30,838 3,559
16 767,207 1,243,436 88,128 642,998 34,839 3,880

1

1 0 0 0 0 0 0
2 991,631 781 117 1,006,129 9 0
3 1,548,699 1,836 426 1,377,042 18 0
4 134,902 3,001 839 152,237 36 0
5 1,116,576 2,800 1,376 1,013,564 30 0
6 1,877,219 2,967 1,789 1,847,694 41 1
7 2,547,937 3,870 1,837 2,507,082 30 0
8 3,153,324 3,498 1,991 3,271,212 58 0
9 3,585,995 5,662 2,469 3,526,555 42 1
10 3,873,651 11,793 3,175 3,987,872 64 0
11 4,365,726 6,521 3,272 4,147,710 53 0
12 4,263,009 12,901 3,434 4,426,116 69 1
13 44,81,066 8,318 3,825 4,364,179 50 2
14 4,831,710 9,102 5,465 4,421,809 67 0
15 4,509,130 11,082 5,883 5,743,770 85 0
16 4,880,687 12,481 57,360,977 4,914,192 120 0
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Reads-
writes,
4:1

10

1 0 0 0 0 0 0
2 20,278 30,506 2,433 33,540 186 4
3 495,989 61,564 6,002 490,576 663 11
4 52,116 82,611 9,244 133,110 697 14
5 311,945 86,376 12,413 379,712 768 24
6 603,665 77,466 15,463 593,171 1,019 39
7 867,547 121,110 18,781 853,661 879 64
8 1,048,296 132,573 21,524 1,038,843 809 84
9 1,339,772 171,436 24,719 1,372,081 1,832 116
10 1,553,177 181,303 27,317 1,573,214 1,691 119
11 1,861,970 205,858 31,450 1,814,199 2,126 148
12 2,091,376 220,778 35,386 1,921,108 2,344 174
13 2,211,813 247,902 39,058 1,962,985 7,917 210
14 2,437,334 285,992 41,909 2,090,061 2,787 245
15 2,498,094 312,268 44,510 2,172,748 3,155 239
16 2,497,470 326,432 47,879 2,563,169 3,148 313

100

1 0 0 0 0 0 0
2 1,012 306,540 24,716 1,522 3,398 170
3 30,541 641,681 31,884 3,144 12,325 338
4 5,612 802,210 43,259 3,924 16,231 520
5 36,947 466,368 49,883 3,9146 23,220 803
6 73,381 485,848 52,669 76,446 14,367 1,111
7 111,608 428,747 54,475 115,571 19,448 1,421
8 152,477 646,615 51,291 150,945 13,181 1,800
9 185,423 756,044 53,291 205,889 22,161 1,968
10 228,027 768,633 56,245 231,334 30,845 2,272
11 246,155 886,960 59,178 272,884 32,050 2,608
12 307,383 934,826 60,071 300,768 37,186 2,930
13 322,243 1,003,733 64,072 292,474 36,015 3,035
14 369,113 1,013,108 66,202 359,984 39,848 3,527
15 347,137 1,102,995 65,293 404,955 43,640 3,678
16 418,867 1,158,639 67,509 406,499 47,950 4,025

Reads-
writes,
8:1

1

1 0 0 0 0 0 0
2 763,424 949 231 845,909 7 0
3 1,357,146 2,377 740 1,208,277 25 0
4 95,619 3,080 1,217 126,322 37 1
5 947,901 3,639 1,148 900,177 26 0
6 1,593,778 3,398 1,590 1,545,514 31 0
7 2,172,170 3,176 1,912 2,222,696 35 1
8 2,711,946 5,143 2,410 2,705,954 34 1
9 3,117,777 5,823 3,053 2,930,588 68 1
10 3,522,296 15,717 3,219 3380738 72 0
11 3,735,396 9,566 3,762 3,763,342 65 2
12 4,152,194 8,939 4,126 4,271,909 86 2
13 4,334,197 12,481 4,510 4,278,053 119 5
14 4,243,699 10,715 45,284,599 4,222,797 133 4
15 4,409,051 13,864 5,175 4,489,961 114 1
16 4,733,603 12,069 5,761 4,196,276 114 4

10

1 0 0 0 0 0 0
2 11,497 35,014 3,710 30,549 228 4
3 300,438 72,518 7,395 314,285 650 21
4 39,108 99,168 12,294 72,558 1,146 44
5 205,055 159,919 16,099 210,522 1,464 88
6 384,469 129,869 18,529 373,537 1,125 71
7 521,877 105,189 21,939 560,399 1,761 132
8 672,190 93,843 25,524 728,010 1,685 130
9 903,911 182,365 28,305 873,575 2,018 202
10 968,262 222,241 31,085 1,054,995 2,200 202
11 1,122,084 225,294 33,637 1,219,399 2,307 281
12 1,325,120 263,973 37,327 1,352,856 2,753 279
13 1,505,480 295,584 39,939 1,214,906 2,959 335
14 1,659,500 362,594 43,539 1,058,749 3,690 282
15 1,804,523 368,546 46,111 1,602,766 3,814 329
16 1,465,097 381,548 49,092 1,857,269 4,045 402
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100

1 0 0 0 0 0 0
2 809 206,134 18,497 705 6,506 194
3 8,526 468,305 30,940 10,425 11,218 338
4 4,435 495,287 31,957 3,080 21,015 626
5 19,692 721,504 36,798 23,215 18,863 926
6 37,243 611,243 37,511 46,430 28,783 1,190
7 59,520 320,852 32,342 68,693 14,482 1,386
8 83,359 341,355 33,809 93,100 15,908 1,728
9 100,857 687,560 33,604 117,363 28,642 1,978
10 204,083 680,063 38,981 136,900 35,322 2,179
11 155,733 578,688 44,615 160,573 33,480 2,369
12 164,909 812,030 38,590 179,731 41,361 2,669
13 194,939 941,114 56,260 192,363 84,560,515 2,802
14 227,543 959,357 60,129 257,009 47,300 3,055
15 215,458 1,254,096 59,685 279,151 51,969 3,212
16 245,468 950,033 57,642 274,801 56,002 3,377

Table 6.3: The numbers of aborts that have been observed during the evaluation. Each number refers to a complete test
with a run time of one minute. The allocator tests do not generate conflicts; so they are left out here. The
test of Figure 6.9, where a modified tree setup was used, only contains non-conflicting writes, so it is left out
as well. With several tens of millions some of the values are extremely high. These aborts can be attributed
to the implementation of TinySTM: The way in which memory locations are mapped to locks can result in
false sharing of locks among independent transactions: If stack memory of two transactions is mapped to the
same internal locks, the transactions observe conflicts, even though their read and write sets do not overlap.
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7 Future Work

This chapter presents some ideas on how to improve the design and implementation of the
presented work.

7.1 Performance and Scalability

There are some possible changes to design and implementation that might result in a higher
overall performance and scalability.

7.1.1 Offset-independent scatter-gather I/O

When instructing a component to apply or undo an event, the framework’s current implementa-
tion passes successive entries in the history that were inserted by the same component in one call.
This results in better cache locality, less function-call overhead, and allows the I/O component
to merge successive write operations at consecutive offsets to one single, large write.

The calls readv and writev, known as scatter-gather I/O, allow for the reading and writing at
various file offsets with one single call. This is a companion feature to the read and write calls.
Instead of supplying a single buffer and length argument, a vector of these values is passed. The
calls themselves work as if each entry in the vector had been executed individually.

Linux kernels since version 2.6.30 and some BSD systems support offset-independent variants
of scatter-gather I/O, called preadv and pwritev. These interfaces work similar to readv and
writev, but each vector entry has an extra field, which holds the file offset for the operation.

This offset-independent scatter-gather I/O can be used to merge the apply phase of write
operations, even if the writes are not performed at consecutive offsets. The transaction then
only calls preadv once, instead of pread for each individual write operation in the history.

There is indication that this could result in significant performance improvements. A single
write operation of 24 byte was measured with approximately two thousand five hundred cycles.
For 10 calls to apply, this results in an overhead of around twenty five thousand cycles. If the
framework is able to perform write merging, the 10 writes only take eight thousand five hundred
cycles to apply; an improvement of factor three. This can also be observed by comparing Figures
6.8 and 6.11. The throughput for sequential writes is two to three times higher than for random
writes. If the use of offset-independent scatter-gather I/O leads to similar results in the general
case, it might be possible to hide some of the framework’s overhead behind it.

7.1.2 Irrevocability

A discussion about mixing revocable and irrevocable transactions can be found in [SMS08].
Therein Spear, Michael, and Scott present different approaches for parallel execution of revocable
transactions while an irrevocable transaction is present.

Similar approaches could be applied to the framework. Currently its implementation switches
to serial mode whenever a transaction becomes irrevocable. This is unnecessary in some situ-
ations. Often it is preferable to run one transaction irrevocable, but allow for other, unrelated
transactions to execute concurrently.
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An improvement to irrevocability would be to first switch to a less restrictive irrevocable-but-
concurrent mode, where concurrent transactions are allowed. The transaction running irrevoca-
bly can then still be switched to serial mode if necessary.

The framework’s implementation is not yet prepared to handle this. The most important
problem to solve is the abort of transaction without their assistance. At the moment, when a
transaction detects a conflict, it frees its resources and aborts itself. This works well because
each transaction is aware of its resources and can release them. In the case of on an irrevocable-
but-concurrent mode, when the irrevocable transaction detects a conflict it does not abort itself,
but the transaction it conflicts with. This can lead to resource leaks if the aborted transaction
is not prepared; like when it is in the process of acquiring a resource, but not yet finished. Care
has to be taken to prevent this from happening.

7.1.3 Contention management

Having many concurrent transactions likely results in a large number of aborts if the transactions
conflict with each other. If a transaction detects a conflict it aborts itself, even though it might
be better to abort the other transaction. In bad cases the resulting transactional application has
a lower throughput than a coarse-grainly locked one, even if the framework’s internals scale well.

To minimize aborts and optimize towards particular workloads during runtime, a contention
manager could be provided with the framework. This component is called whenever two trans-
actions conflict. It then decides which of the transactions wins the conflict. The contention
manager can take additional parameters into account; such as transaction length, size of the
read and write sets, or the number of previous aborts. As an example, the contention manager
might prefer a transaction with many file reads over a transaction that mostly executed deferred
file writes.

The framework does not yet contain a contention manager. What is missing, besides the
contention manager itself, is again a way to abort a transaction without its assistance, or a way
to signal the transaction to abort itself. In a simple implementation, a flag variable could be used
to mark a transactions as aborted. It is set by the contention manager and checked frequently
by the transactions. As soon as the losing transaction aborted itself, the winning transaction
can continue.

7.1.4 Transaction scheduling

Currently, transaction scheduling relies completely on the operating system’s thread scheduler,
which schedules aggressively : a thread is scheduled if it is ready. This strategy contradicts an
observation made in Chapter 6: certain workloads scale up to a number of transactions, but
then their throughput stalls or decreases due to conflicts. As a solution, the previously men-
tioned contention manager, once in place, could be extended and be part of a larger transaction
scheduling system. This scheduler could use a conservative approach: it starts transactions until
an optimum throughput is reached, but not more. In the case of conflicts it could stop transac-
tions instead of aborting them completely. For example, in the case that a transaction holds a
reader lock, a possible writer does not have to be aborted, but could just wait until the reader
committed.

With the current implementation it is not possible to have transactions waiting for each other,
as this might result in deadlocks. With the transaction scheduler, this feature is well imaginable.
The irrevocable-but-concurrent mode, described in the previous section, is just a special case of
this scenario and trivially supportable by the scheduler.
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There are two possible implementations of transaction scheduling: a kernel-based approach and
an application-based approach. For the kernel-based approach the transactional memory system
has to make information abort active transactions available to the operating system. Some
pages of shared memory between application and scheduler should be sufficient. The transaction
scheduler would extend or replace the standard kernel thread scheduler to take the additional
information into account when scheduling threads with active transactions. The approach is not
portable, but enables good scheduling results.

The application-based transaction scheduler does not need modifications in the kernel. The
kernels thread scheduler only has to be informed which threads to schedule. A locking protocol
between transaction and transaction scheduler allows this. Whenever the transaction is blocked
on a lock, it is not scheduled by the thread scheduler. When the transactional memory system
decides to schedule a transaction it releases the respective lock, which unblocks the transaction.
The application-based approach is portable among different systems but likely yields worse results
than the kernel-based approach; especially if the strategies of the transaction scheduler and the
underlying thread scheduler are not compatible.

7.2 Transactional File-System Support

The current support of file-system operations works well enough if application developers can
live with the semantics provided by posix. However, it might surprise some programmers that
operations on the file system are not executing in isolation. For example, without support from
the operating-system kernel a file can be removed by an external process while it is in use by a
transaction.

A likely assumption of the application programmer might instead be that the state of the file
system, as seen by a transaction, is consistent with the transaction’s operations. The transac-
tional memory system could therefore try to provide each transaction with its own view on the
file system and resolve conflicts before committing any updates. This section provides some ideas
of how to achieve this.

7.2.1 Snapshots

Snapshot support is hardly achievable from within the transactional memory system, but several
possible solutions are imaginable. For example, the file system itself could provide such a facility.
Modern file systems, such as ZFS and Btrfs, provide means to create snapshots of the file system’s
state. It might be possible to use or extend these facilities to provide a transaction-local view on
the file system.

The transactional memory system retrieves a snapshot of the file system before the first file-
related external action is executed. All further file operations are invoked on this snapshot.
During validation the transactional memory system instructs the file system to search for con-
flicts when reintegrating the altered snapshot. Depending on the result, it then decides on how
to proceed. Irrevocable transactions can be supported by reintegrating the snapshot before
becoming irrevocable and afterwards working on the file system’s master copy directly.

7.2.2 Version control systems

A similar solution could use a version control system as file system. It is possible to mount repos-
itory’s of most popular version control systems like normal file systems. The mount directory
then contains the local view on the repository’s data.
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A transactional memory system would present each transaction with an individual copy or a
branch of the repository. On commit the local copy is reintegrated into the repository’s master
branch and any conflicts are detected by the version control system. In the case of a conflict,
the transactional memory system would roll back the transaction and checkout a new copy of
the master branch.

This solution might work even better than the snapshot mechanism presented above: conflict
detection and resolution is the core function of every version control system and not just an extra
feature. Also, this completely operates in user space, which makes it more portable than a real
file system.

7.2.3 Union mounts

A third solution could be the use of union mounts. Normally, when mounting several file systems
at the same path only the last mounted file system is visible. Union mounts provide a means to
make them all visible at the same time. The content of earlier mounted file system is visible as
long as it is not overlayed by content of a later mounted file system.

This allows the transactional memory system to provide each transaction with its own view on
the file system. For each transaction it mounts a transaction-local, write-able file system over a
read-only global file system such that all the transaction’s operations execute within the local file
system. For committing a transaction’s updates, some central service is required to coordinate
among the participating transactions and the rest of the system.

7.2.4 Problems

While the presented ideas could certainly be implemented in most cases, it is questionable
whether the results are always useful to the application programmer. Providing local views
on the file-system state might differ from posix semantics in subtle ways and therefore confuse
the programmer or break the application. For example, the file system is used for various forms of
inter-process communication. Providing each transaction with a local view might be completely
against the programmer’s intention. Assume a transaction creates a fifo and waits for someone
to connect. As the fifo only exists in the transaction’s local file-system view no process has the
chance of connecting. The transaction would either be blocked in a deadlock by waiting forever;
or a livelock by timing out, and retrying again and again.

7.3 Error Handling

Commit-time error handling can be confusing to the application developer: There is a separation
of a call’s invocation, which happens from within the transaction, and the occurrence of the error,
which happens at commit time.

In most situations it might be better to prevent commit-time errors from happening in the
first place. An enhancement to the framework could automatically predict a commit’s chance
to be successful before the commit even starts. For example, the framework could pre-allocate
all necessary disk space before applying any write actions. If one of the pre-allocations fails,
it is possible to revoke previously done pre-allocations without problems. The transaction can
afterwards abort and provide an error code on the first write operation that is executed during
its retry. For this to work in the general case, one has to examine all error codes and their
underlying cause, whether the error can be predicted.
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A more complicated approach is to completely trace the execution of a transaction. When
an error occurs during the commit’s pre-allocation step, the state is rolled back to the point
where the error would have occurred in non-transactional code and an error is reported to the
transaction.

The obvious problem is the performance of this approach. Tracing an application during
its execution makes the application noticeably slower. A possible solution is to make a single
snapshot at the transaction’s start and let it first execute without tracing. If an error occurs
during the commit phase, the transaction is set back to its snapshot state and executed a second
time with tracing enabled.

Another problem is the relevance of the error during the retry. When retrying the transaction
and injecting an error, it is not guaranteed whether the error would occur in the non-transactional
execution. Such false positives have to be checked for as well.

The major problem with all variants of rollback is that once an action has been applied, it
is very hard to revoke its effects. Think of a write to a FIFO: once it is applied, it cannot be
undone anymore. However, if these problems could be solved in a useful way, this would provide
failure atomicity for the transaction’s actions. Then a transaction is guaranteed to leave the
system in a consistent state, even in the case of an error.
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8 Conclusion

A framework for executing external actions within memory transactions has been presented. It
strives to fulfill the requirements of correctness, standards compliance, extensibility, and perfor-
mance.

The design is based on domains and actions, which abstract the system’s resources and func-
tion calls. Each domain provides information hiding, and independent consistency constraints
for its resource. Each action allows its underlying function to either be deferred until the commit
happens, compensated during the transactions aborts, or make the transaction irrevocable. To
handle commit-time errors a simple mechanism is provided that allows the application program-
mer to specify error handlers for individual actions.

Domains and actions are grouped into components. Components provide a generic public
interface, such that new domains and actions can be added without changing the framework’s
internals.

The framework’s implementation provides transactional versions of the most important parts
of the posix programming interface. This includes memory allocation, file-descriptor I/O, socket
I/O, basic file-system support, and many simple functions.

The framework has been evaluated with respect to the specified requirements. Correctness;
namely atomicity, consistency, and isolation; can be achieved for process-local resources, which
are under the control of the transactional memory system. The state of external resources, such
as the file system, cannot be isolated completely and therefore cannot be handled reliably by
the transactional memory system. Standards compliance has been mostly achieved. Some in-
compatibilities with non-transactional posix systems remain. These are related to limitations of
the platform or the semantics of some function calls. Extensibility has been achieved by the use
of components. The requirement of performance has been achieved partially. The throughput
of memory allocation does not scale with the number of processors, but this is unrelated to the
framework. The file-descriptor I/O throughput varies with the parameters, such as file size,
transaction length, or read-write ratio. It is hampered by serious overhead in the single-threaded
case, but can outperform non-transactional code in some multi-threaded scenarios. For pes-
simistic concurrency control, file-descriptor I/O throughput typically scales up to approximately
four to six concurrent transactions, and afterwards stalls or decreases. Optimistic concurrency
control currently does not seem to provide any benefits. It rarely outperforms the pessimistic
strategy. Also, shortcomings in the implementation of Linux’ virtual file-system switch currently
prevent good scalability for real applications.

Several ways of improving the framework have been identified. Performance improvements
could possibly be achieved by the amount of low-level commit operations, and using an optimized
transaction scheduling. The problem with isolation in the file system might be solved with file-
system implementations that support isolation natively, such as file-system snapshots, version
control systems, or union mounts. A simplified error handling that more resembles the non-
transactional case might be possible with an extensive tracing of transactions.

Currently unknown are real-world workloads of production systems. As a near-term goal,
Linux’ file-system implementation should be changed to allow scalable, concurrent access to file
buffers; and some real applications should be converted to use transactional memory, which
would allow to gather information about realistic workloads.
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A Transactional Functions of the POSIX
Standard

This chapter lists some important functions of the posix specification, together with a short note
on how they are supported by Taglibc.

A.1 assert.h

Interface Class Remarks

assert stateless This macro is typically resolved to a con-
ditional abort or some internal interface.

Table A.1: Interfaces in assert.h.
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A.2 complex.h

Interface Class Interface Class Interface Class

cacosf stateless ccosf stateless csinhf stateless
cacoshf stateless ccoshf stateless csinhl stateless
cacoshl stateless ccoshl stateless csinh stateless
cacosh stateless ccosh stateless csinh stateless
cacosl stateless ccosl stateless csinl stateless
cacos stateless ccos stateless csin stateless
casinhf stateless cexpf stateless csqrtf stateless
casinhl stateless cexpl stateless csqrtl stateless
casinl stateless cexp stateless csqrt stateless
casin stateless clogf stateless cssinf stateless
catanf stateless clogl stateless ctanf stateless
catanhf stateless clog stateless ctanhf stateless
catanhl stateless cpowf stateless ctanhl stateless
catanh stateless cpowl stateless ctanh stateless
catanl stateless cpow stateless ctanl stateless
catan stateless csinf stateless ctan stateless

Table A.2: Interfaces in complex.h.

106



A.3 errno.h

Interface Class Remarks

errno stateful In multi-threaded programs, errno is typ-
ically implemented as a macro around an
internal interface. The use of errno is so
common that is makes sense to handle its
state in the transactional memory system.

Table A.3: Interfaces in errno.h.

A.4 fcntl.h

Interface Class Remarks

creat unprotected
fcntl unprotected or real Reading a file property is an unprotected

action. Changing a property makes it a
real action.

open unprotected posix lacks the necessary capabilities to
fully implement open in a transaction-safe
fashion.

Table A.4: Interfaces in fcntl.h.
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A.5 math.h

Interface Class Interface Class Interface Class

acosf stateless erff stateless logbf stateless
acoshf stateless erfl stateless logbf stateless
acoshl stateless erf stateless logbl stateless
acosh stateless exp2f stateless logbl stateless
acosl stateless exp2l stateless logb stateless
acos stateless exp2 stateless logb stateless
asinf stateless expf stateless logf stateless
asinhf stateless expl stateless logl stateless
asinhl stateless expm1f stateless log stateless
asinh stateless expm1l stateless powf stateless
asinl stateless expm1 stateless powl stateless
asin stateless exp stateless pow stateless
atan2f stateless hypotf stateless sinf stateless
atan2l stateless hypotl stateless sinhf stateless
atan2 stateless hypot stateless sinhl stateless
atanf stateless ilogbf stateless sinh stateless
atanhf stateless ilogbl stateless sinl stateless
atanhl stateless ilogb stateless sin stateless
atanh stateless j0 stateless sqrtf stateless
atanl stateless j1 stateless sqrtl stateless
atan stateless jn stateless sqrt stateless
cbrtf stateless lgammaf stateful tanf stateless
cbrtl stateless lgammal stateful tanhf stateless
cbrt stateless lgamma stateful tanhl stateless
cosf stateless log10f stateless tanh stateless
coshf stateless log10l stateless tanl stateless
coshl stateless log10 stateless tan stateless
cosh stateless log1pf stateless tgammaf stateless
cosl stateless log1pl stateless tgammal stateless
cos stateless log1p stateless tgamma stateless
erfcf stateless log2f stateless y0 stateless
erfcl stateless log2l stateless y1 stateless
erfc stateless log2 stateless yn stateless

Table A.5: Interfaces in math.h.
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A.6 pthread.h

Interface Class Interface Class

pthread attr init real pthread create real
pthread attr destroy real pthread detach real
pthread attr getdetachstate real pthread equal stateless
pthread attr getschedpolicy real pthread exit real
pthread attr getschedparam real pthread join real
pthread attr getinheritsched real pthread once real
pthread attr getscope real pthread self stateless
pthread attr setdetachstate real
pthread attr setschedpolicy real
pthread attr setschedparam real
pthread attr setinheritsched real
pthread attr setscope real

Table A.6: Interfaces in pthread.h.

A.7 sched.h

Interface Class

sched yield stateless

Table A.7: Interfaces in sched.h.

A.8 stdio.h

Interface Class Remarks

rename real A call to rename has to commit all previous
writes to the file to behave like its non-
transactional counterpart.

Table A.8: Interfaces in fcntl.h.
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A.9 stdlib.h

Interface Class Interface Class

abort pure qsort stateful
calloc unprotected rand r stateful
free unprotected rand unprotected
malloc unprotected realloc unprotected
mkdtemp stateful srand unprotected
mkstemp unprotected system real
posix memalign unprotected

Table A.9: Interfaces in stdlib.h.

A.10 string.h

Interface Class Interface Class Interface Class

memccpy stateful memcpy stateful strcase stateful
memchr stateful memmove stateful strcpy stateful
memcmp stateful memset stateful strlen stateful

Table A.10: Interfaces in string.h.

A.11 sys/select.h

Interface Class

select stateful

Table A.11: Interfaces in sys/select.h.
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A.12 sys/socket.h

Interface Class Remarks

accept real
bind real
connect real
listen real
send unprotected or real Similar to write
shutdown unprotected or real Similar to close
socket unprotected or real Similar to open
recv unprotected or real Similar to read

Table A.12: Interfaces in sys/socket.h.

A.13 sys/stat.h

Interface Class Interface Class Interface Class

chmod stateful lstat stateful mknod stateful
fchmod stateless mkdir stateful stat stateful
fstat stateful mkfifo stateful umask real

Table A.13: Interfaces in sys/stat.h.
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A.14 unistd.h

Interface Class Remarks

chdir unprotected
close unprotected
dup unprotected
dup2 real This call creates and closes a file descriptor

at the same time.
fchdir unprotected
fsync unprotected
getcwd unprotected
link unprotected
lseek unprotected
pipe unprotected Similar to open.
pread unprotected
pwrite unprotected
read unprotected
sleep stateless
sync unprotected
unlink unprotected
write unprotected

Table A.14: Interfaces in unistd.h.
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