
Profiling and Performance

Gabriele Svelto, Thomas Zimmermann

June 2, 2013

Algorithms and Complexity

High-level Profiling and Optimization

Low-level Profiling and Optimization

Profiling Workshop

Algorithms and Complexity

High-level Profiling and Optimization

Low-level Profiling and Optimization

Profiling Workshop

Computational Complexity

I Given
I Algorithm
I Input of length n

I How many steps are necessary to complete algorithm as
n→∞?

I Big-O notation

I algorithm(n) = O(steps(n)) as n→∞

Typical Complexity Classes

O(1) constant complexity, sign function, absolute values,
searching in well-tuned hash tables

O(logn) logarithmic complexity, binary searches, balanced
search trees

O(n) linear complexity, linear searching

O(nlogn) linearithmic complexity, building search trees

O(nk) polynomial complexity, naive sorting (e.g, bubble
sort), matrix multiplication

O(kn) exponential complexity, traveling salesman problem

I example sort.c

Typical Complexity Classes

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

s
te

p
s
(n

)

n

O(1)
O(logn)

O(n)
O(nlogn)

O(n
k
)

O(k
n
)

Figure: Complexity Classes

Determining Complexity
I use standard algorithms with known complexity

or

I try to describe relation between n and number of primitive
operations

I example of bubble sort
1. n iterations
2. first iteration: n − 1 compare operations
3. second iteration: n − 2 compare operations
4. n′th iteration: n − n = 0 compare operations
5. average per iteration: n/2 compare operations
6. overall complexity: O(n ∗ n/2) = O(n2/2) = O(n2)

I combinations of algorithms have the maximum complexity of
primitive algorithms

I example of bubble-sorting absolute values
1. walk over all elements (O(n))

I compute absolute value for each element (O(1))

2. bubble-sort the results (O(n2))
3. overall complexity: O(n ∗ 1 + n2) = O(n2)

Which Algorithm Is Best?

I naive answer: use algorithm with lowest complexity
I but there are exceptions

I n is small
I better algorithms come with setup costs (e.g., binary searches

need sorted input)
I hardware has branch prediction and is optimized for linear

memory access (by prefetching memory)
I binary searches hop around in elements
I linear searches will walk over elements

I also consider other resources

I B. Kernighan, R. Pike: The Practice of Programming,
Addison-Wesley 1999

Algorithms and Complexity

High-level Profiling and Optimization

Low-level Profiling and Optimization

Profiling Workshop

JavaScript

I General tips
I Don’t mix types
I Use simple types as much as possible

I Use an integer as an ID instead of a string
I Use short arrays to store short vectors (e.g. x, y, z coordinates)

I Recompute simple values, don’t store them
I Use arrays when possible

JavaScript (continued)

I DOM navigation
I Use node.children not node.childNodes to navigate child

nodes
I Always iterate at the same level with nextElementSibling

I Object management
I Use standard objects over classes and prototypes
I Don’t add new properties to an object after initialization
I Don’t remove properties with delete

Garbage collection

I Use small types whenever possible

I Avoid creating too many temporary objects

I Don’t hold objects you don’t need any more

I Watch out for variables held by closures

I Again, don’t add new properties to an object after
initialization

I Again, don’t remove properties with delete

I Unbind all unused listeners

I If you’re keeping a cache around or a similar structure listen to
memory-pressure events and flush it when you receive them

I Be careful when manipulating strings
I Avoid useless concatenations / splits
I Avoid concatenating to large strings

CSS

I Keep selectors simple

I Complex selectors can be expensive and make your styles hard
to understand for people reading the code

I Use ID-, tag- and class-based rules
I #toppanel {...}
I .squarebutton {...}
I a {...}

I Avoid universal selectors
I [hidden=true] {...}

I In general the less elements a rule can apply to the better

Layout

I Always specify sizes for elements if possible

I Prefer CSS backgrounds to image tags

I Setting a position / size property will likely trigger a reflow,
group those changes to multiple elements to avoid causing
more than one

I Reading a position / size property before the page has been
reflowed will cause a reflow and it will be a synchronous one!

I Use a DocumentFragment to append elements to a DOM tree

I Fully initialize a new element before adding it to the DOM tree

Painting

I Group methods that do or cause repainting

I Avoid animated images (PNG/GIF), are expensive to paint
and inflexible

I Make good use of <canvas> elements
I For animation that is not possible via CSS properties
I For drawing small animated UI elements (e.g. status icons)
I For animated images
I They are requestAnimationFrame()-friendly
I Use native types in the drawing code (arrays, etc...)
I Do not use them for things that can be done using

conventional methods, native Gecko is faster at drawing than
JavaScript code

Startup performance

I Don’t include scripts or stylesheets that are not immediately
needed, load them when needed

I Use the ”defer” or ”async” attribute on script tags needed at
startup

I Create DOM elements only when they are actually needed
I An element can be hidden in a comment and extracted from it

when needed
I <div id="foo"><!-- <div> ... --></div>
I foo.innerHTML = foo.firstChild.nodeValue

I Optimize your assets

I Don’t wait for storage / remote resources, load them while
the application is already running

Application responsiveness

I Can be hampered by a number of issues
I Blocking on slow operations (I/O, network)
I Long-running CPU-intensive operations
I Excessive updates / refreshes
I Platform limitations

I Use asynchronous APIs as much as possible
I For storage I/O

I AsyncStorage is what you want
I Keep away from LocalStorage (unless it’s used in a worker)
I Using IndexedDB directly is fine but keep everything

asynchronous

I For network resources
I You don’t want your application to wait for a timeout to expire

I For local resources too opt for asynchronous interfaces when
both async and sync are available

Application responsiveness (CPU usage)

I Limiting CPU usage is always a win
I Lets other applications run smoothly
I Makes the CPU available for background tasks
I Lengthens battery life!

I Use web worker threads to offload CPU-intensive or
long-running tasks

I https://developer.mozilla.org/en-US/docs/DOM/

Using_web_workers
I Keeps the main thread free and thus the application responsive
I Limitation: a worker cannot manipulate the DOM!

I Watch out for event handler spam
I Data transfer progress updates
I Rapidly firing timers
I Throttle or group events when possible

I Always use requestAnimationFrame() for animations

https://developer.mozilla.org/en-US/docs/DOM/Using_web_workers
https://developer.mozilla.org/en-US/docs/DOM/Using_web_workers

Algorithms and Complexity

High-level Profiling and Optimization

Low-level Profiling and Optimization

Profiling Workshop

C and C++ - Executables and Address Spaces

I executables consist of shareable sections

.text program code
.rodata read-only data

I and non-shareable sections

.data write-able data
.bss zero-initialized writeable data

.text .rodata Heap.data Stack.bss

Figure: Memory layout

I address spaces are composed of executable’s sections plus
I stack
I heap memory

C and C++ - Static Memory Allocation

I example lut.c

I maximize page sharing among running programs
I init static data with zero to store them in .bss segment
I mark constant data as static const to put it into read-only

sections

I minimize dynamic relocations
I performed by dynamic linker when loading program
I computes runtime-adresses of static data and updates

references
I updated references are not sharable among programs
I avoid indirections

I static pointers to static pointers
I prefer static const str[] = "" over static const *str

= ""

I J. R. Levine: Linkers & Loaders, Academic Press 2000

I U. Drepper: How To Write Shared Libraries,
http: // www. akkadia. org/ drepper/ dsohowto. pdf

http://www.akkadia.org/drepper/dsohowto.pdf

C and C++ - Dynamic Memory Allocation

I memory allocators organize memory in larger segment

I unused segments of the same size are maintained in the same
data structure (list, tree, etc.)

I allocation requires lookup of free segment from the data
structure

I overhead from search operation

C and C++ - Dynamic Memory Allocation

I example concat.c

I reuse allocated memory if possible
I prevents expensive malloc/free cycles

I similar behavior in C++, but extra costs from
(de-)construction

I don’t call new/delete
I reuse existing instances (e.g., strings)
I reset object state and fill with new data

C and C++ - Word-sized Data

I example concat.c

I use word-sized data streams to optimize number of load
operations

I if possible
I prefer mem* over str*
I prefer float over double

C and C++ - Other Tips

I initialize class members in constructor, don’t assign

I use references or pointers for passing objects to functions

I use references or pointers for returning class members

I construct objects in return statement to enable return-value
optimization

I overload functions for different argument types

I S. Meyers: Effective C++, 3rd ed., Addison-Wesley 2005

CPU - Pipelines

Decode and
operand fetch

Fetch ResultsInstructions Execute Store

Figure: 4-stage processor pipeline

I ideally 1 instruction per pipeline per clock cycle

I need to keep the pipeline filled with instructions

I multiple next instructions possible after conditional branches

CPU - Branching

I processor tries to predice target of a conditional jump
instruction

I statically (e.g., always expect true)
I dynamically with branch-prediction buffer

I if correct, no overhead
I otherwise

1. processor throws away results of incorrect branch
2. clears pipeline
3. starts executing instructions of correct branch

I overhead of incorrect predictions depends on pipeline length
(up to 20 clock cycles)

CPU - Branch-less Code

I example sgn.c

I advantages
I no branch prediction necessary
I frees slots in the branch-prediction buffer
I often allows use of mutiple pipelines in parallel

I disadvantages
I might require more computation
I no expensive computation possible

CPU - Branch-less Code

I compute results without conditional jumps
I use multiply ∗ instead of logical and &&

I && does not evaluate right-hand side if left-hand side is false
I requires a conditional jump
I ∗ always evaluates both sides, hence no conditional jump

I use add + instead of logical or ||
I same as for &&

I negate twice to compute 0 or 1
I first negation maps 0 to 1, and any other value to 0
I second negation maps 1 back to 0, and 0 to 1

I do expensive computations beforehand, only use results

I use look-up tables for complex mappings

I Bit Twiddling Hacks: http:

// graphics. stanford. edu/ ~ seander/ bithacks. html

http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html

Memory - Look-up Tables

I example lut.c

I advantages
I map arbitrary input to arbitrary output
I predictable overhead

I disadvantages
I additional overhead from memory access

Memory - Alignment

I load instructions operate along word boundaries

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

UnalignedAligned

Figure: Memory access

I align data to word boundaries
I single load instruction
I ABI requires this
I gcc offers attribute ((align(n)))

I can result in unused bytes within data structures
I example align.c
I arrange structure fields according to alignment
I use pahole for optimizing data structures

Memory - Caches

I processor fetches whole cache lines (32, 64 Byte) at once

I align larger data structures to cache-line boundary

I first-used data should go at the beginning of cache line

I keep related data on the same cache line

I use data types with minimum size

I use individual bits

Memory - False Sharing

I two global variables with unrelated data might be located on
the same cache line

I processor fetches whole cache lines at once

I unmodified cache lines are shared by all processors

I writing to a cache line marks it as dirty

I affects all contained values

I other processors will update their cache line from the modified
copy even if they don’t operate on the modified value

I known as False Sharing

I try to put unrelated global data onto separate cache lines

Memory - Cache Line Bouncing

I processors use shared variables for communication with each
other

I data exchange
I syncronization

I write operations invalidate cache lines

I read operations need to fetch cache lines

I known as Cache Line Bouncing

I can be avoided by good concurrency control

I U. Drepper: What Every Programmer Should Know About
Memory,
http: // www. akkadia. org/ drepper/ cpumemory. pdf

http://www.akkadia.org/drepper/cpumemory.pdf

Concurrency Control

I mechanism of protecting concurrent access to shared
resources against each other

I aka. locks vs. atomic ops

Concurrency Control - Atomic Ops

I atomic operations modify single values
I advantages

I good if lock contention is low
I no dead locks

I disadvantages
I more overhead than non-atomic operations, because of bus

lock
I no progress guaranteed (known as live lock)

Concurrency Control - Locking

I works on arbitrary data
I advantages

I good if lock contention is high
I operating-system scheduler can guarantee fairness

I disadvantages
I more initial overhead because of system-call
I dead locks possible

I increase lock granularity if contention is high

Tools

readelf information about ELF binaries

perf system-wide profiling for Linux

oprofile alternative to perf

pahole layout of data structures in memory

Algorithms and Complexity

High-level Profiling and Optimization

Low-level Profiling and Optimization

Profiling Workshop

Profiling

I Why profiling?
I To identify hot-spots, regressions and unpredictable issues
I To get an accurate idea of the overall performance profile of

an application and not just a part of it
I To make informed decisions on what to optimize

I Never optimize without profiling first!

Profiling with the built-in profiler

I SPS built-in profiler
I The best way to profile anything within Firefox and FxOS
I https://developer.mozilla.org/en-US/docs/

Performance/Profiling_with_the_Built-in_Profiler

I Advantages
I Captures both native and JavaScript code
I Has complementary tools for spotting events (GC, layout, etc)
I Profile information is easy to read and share

I Disadvantages
I Limited to the main thread
I Limited native code analysis in FxOS
I Granularity can be too coarse and samples can be skewed
I Does not capture system effects
I Requires a special build

https://developer.mozilla.org/en-US/docs/Performance/Profiling_with_the_Built-in_Profiler
https://developer.mozilla.org/en-US/docs/Performance/Profiling_with_the_Built-in_Profiler

Profiling on your device

I Configuring your build
I Start with a regular B2G build
I Make sure elfhack is disabled in .mozconfig
I ac add options --disable-elf-hack

I Rebuild and flash your device

I Start the profiler with ./profile.sh start

I Check for the running applications with ./profile.sh ps

PID Name

----- ----------------

4989 b2g profiler running

5037 Usage profiler running

5038 Homescreen profiler running

5203 (Preallocated a profiler running

Capturing one or more profiles

I You can capture the profile of an application by specifiying it’s
name or PID

I ./profile capture Homescreen
I ./profile capture 5038

I If all goes well you’ll end up with a .sym file:

Signalling PID: 5038 Homescreen ...

Stabilizing 5038 Homescreen ...

Pulling /data/local/tmp/profile_2_5038.txt into profile_5038_Homescreen.txt

Adding symbols to profile_5038_Homescreen.txt and creating profile_5038_Homescreen.sym ...

Removing old profile files (from device) ... done

I You can also capture profiles for all processes at the same
time by not specifying any parameter

I ./profile capture

Analysing your profile

I The profile will contain up to 100s of the process’ activity

I Default sample time is 10ms, it can be lowered to 1ms at most

I When you have many processes open capturing a profile might
kill some processes due to OOM so tread carefully

I To analyze your profile you will need to upload it to our
web-based service Cleopatra

I http://people.mozilla.com/~bgirard/cleopatra/
I It can also be run locally but then you’ll lose the ability to

share profiles
I The code is available here

https://github.com/mozilla/cleopatra

http://people.mozilla.com/~bgirard/cleopatra/
https://github.com/mozilla/cleopatra

Cleopatra demo

Studying a profile

I Reading call-stacks
I JavaScript code can be easily analyzed and referenced
I Native code currently uses markers, it’s important to spot

major ones
I nsAppShell::ProcessNextNativeEvent::Wait
I JS::EvaluateString and js::RunScript
I Timer::Fire
I nsRefreshDriver::Notify
I Paint::PresShell::Paint
I Layout::Flush
I GC::GarbageCollectNow

I Cleopatra provides hints
I GC markers
I Layout markers
I I/O markers

Studying a profile continued

I Filtering
I JavaScript-only filtering
I Narrow down to a single function/method

I Inverting call stacks

I Zoom as needed to get a better idea of what’s going on

I Upload your profile and add a link to your ticket for easy
sharing

Limits and pitfalls

I Only the main thread is currently sampled, if you have worker
threads significant time might be spent on them

I A lot of activities are delegated to the main B2G process,
capturing both your app and the b2g process is often a good
idea

I The profile shows real-time, not CPU time, if the phone is
loaded it will appear as the app is slower

I The profile does not show system activity
I Use top to spot high system activity
I Watch out for I/O activity, check for write or read calls in

your profile, use top to estimate the wait time
I Use perf if all else fails

I IPC will not show up in the profile so be careful

	Algorithms and Complexity
	High-level Profiling and Optimization
	Low-level Profiling and Optimization
	Profiling Workshop

