Hauptseminar Rechnernetze

An Overview Of Model Driven
Architecture

Thomas Zimmermann

30th May 2008
Dresden University of Technology
Faculty of Computer Science
Institute for System Architecture
Chair for Computer Networks

Abstract

This document gives an overview of the
state of Model Driven Architecture (MDA)
as of spring 2008. It discusses the basic
ideas of MDA, its theoretical concepts and
relation to similar technologies. Some tools
are evaluated and its critic’s points are pre-
sented. The paper’s intended audience are
software developers who are new to MDA
and want to have an introduction to the
topic.

1 Introduction

Model-driven software development is a
technique for creating software applications
where a problem’s solution is not explicitly
stated in a classic programming language,
but modeled with some high-level modeling
language.

Model-driven software development is

based on the concepts of modeling of
software and the automatic generation of
source code. This section presents each of
these concepts by an example and then in-
troduces Model Driven Architecture as an
attempt to standardize model-driven soft-
ware development.

1.1 An Example of Modeling

A model is an abstract, idealized represen-
tation of some concrete knowledge. Be-
cause most problems are too complex to
be fully understood, models often focus on
the major points of the topic, but leave out
most minor details.

The obvious example of modeling in soft-
ware development is the use of the Unified
Modeling Language (UML). It allows the
description of software designs from some
high-level perspective.

UML is independent from any program-

ming language. This enables developers to
conceive the structure and behavior of an
application, without the need to care about
implementation details.

On the other hand, the fact that UML
focuses on object-oriented programming is
a good example of the limitations of models.
An application can be designed along the
paradigms of functional programming, but
UML does not allow for a simple description
of such designs.

1.2 An Example of Automatic
Source-Code Generation

The process of automatic generation of
source code follows some simple steps. The
programmer

1. describes the problem in some very ex-
pressive high-level notation,

2. uses some tools to automatically gen-
erate source code from the description,
and

3. integrates the results into the applica-
tion.

An example of automatic source-code
creation is the development of a text parser.
The parser reads text from an input source,
e.g. a file on the user’s hard disk, and
validates its syntactical correctness against
some predefined rules, i.e. a grammar.

With the generative approach, the pro-
grammer does not implement the text
parser directly, but describes the text
file’s grammar by some specialized domain-
specific language.

The common language for represent-
ing context-free grammars is the Fxtended
Backus-Naur form (EBNF) [Int96]. The
translation to source code is implemented
by a generic conversion tool, i.e. a parser

generator. This program takes an EBNF
grammar description as its input and out-
puts the parser’s source code, i.e. a finite
state automaton. The generated automa-
ton is then included in the application’s
source code.

This example is very common and has
been standard practice for several decades!.
It perfectly outlines the advantages of au-
tomatic source-code creation.

e The specialization of the EBNF makes
it very easy to describe and change

grammars. This way, even non-
programmers are able to write text file
parsers.

e The EBNF is independent of any pro-
gramming language or environment.
All such platform-specific details are
handled by the parser generator. This
also allows for optimizing the automa-
ton for some metric, e.g.
speed or memory consumption, de-
pending on the underlying computer
system.

runtime

e The parser generator has to be written
only once. It can then be used with
any grammar description. The error-
prone details of the resulting automa-
ton’s implementation are handled by
the generator.

Combining the properties of code gener-
ation with the modeling of software finally
results in model-driven software develop-
ment and Model Driven Architecture.

LA widely used parser generator for Unix systems
is GNU Bison [GNU]. Its history reaches back
to the 1970s.

1.3 Model Driven Architecture

The Model Driven Architecture? (MDA)
[OMGa| is an attempt to standardize
model-driven software development on a
number of common technologies and file
formats.

MDA is defined and maintained by
the Object Management Group (OMG)
[OMGD], a consortium formed by several
hundred companies from the IT indus-
try. The OMG also maintains other in-
dustry standards, notably the Common Ob-
ject Request Broker Architecture (CORBA)
[OMGd| and the Unified Modeling Lan-
guage (UML) [OMGc|. The later is closely
related to MDA.

MDA provides a generalization of model-
ing and code generating. The idea of Model
Driven Architecture is to define highly-
detailed models of applications and gener-
ate the source code automatically.

Modeling is done in UML or some other
special-purpose language. The MDA stan-
dard explicitly allows for the definition of
new modeling languages.

Model Driven Architecture is advertised
with the following advantages.

Focus on models. In the planning stage
of software development, the problem and
its solution has to be modeled, either be-
cause the problem is to complicated to be
manageable as a whole or just to make sure
that everyone involved shares the same idea
of the final application.

Programmers tend to produce software
that differs from its model, because what
looked good at the planning stage is some-
times not implementable in the concrete

2The OMG incorrectly calls this standard Model
Driven Architecture instead of Model-Driven
Architecture. This document follows the OMG’s
convention.

programming language.

Because some modeling has to be done
anyway, the idea is to reuse these mod-
els to generate the actual implementation.
Therefore, the model has to be specified in
many details and a description of its run-
time behavior has to be added.

If done consistently, many or even all
components of the application can be gen-
erated by some transformation tool. De-
pending on the model’s level of detail, the
OMG claims to produce 50% to 100% au-
tomatically.

Concentrate on business logic. Business
logic are those parts of an application that
contain the knowledge that is specific to the
problem domain.

The idea is that developers, using MDA,
can concentrate on these core components
and let the low-level routines and glue code
be generated automatically. In the end,
they are faster to produce software then
their competitors and get their product to
the market sooner.

Platform independence. Platform inde-
pendence is achieved by having models that
are completely abstract from any concrete
technology platform. This makes it possible
to deliver applications for several platforms
without any overhead in maintenance. Ad-
ditionally it is possible to migrate between
platforms easily whenever an old platform
becomes obsolete and a new one evolves.

1.4 Overview

This section introduced model-driven soft-
ware development and some of its basic
terms.

Section 2 gives an overview of some tech-
nologies which are related to model-driven
software development.

Section 3 describes the concepts of Model
Driven Architecture and how they are in-
tended to work together.

Some tools are evaluated in Section 4.

Model Driven Architecture is not without
critics. Their main points are presented in
Section 5.

A conclusion is given in Section 6.

A list of all external references is found
at the end of this document.

2 Related technologies

The idea of creating software automatically
is neither new nor original to model-driven
software development. This section gives
an overview of related technologies.

Compilers. A compiler’s task is to trans-
form a program from one language into a
semantically equivalent program in another
language. This process is called compiling.

Compilers are among the oldest tools in
computer science. The first compiler was
written in 1952 by Grace Hopper for the
programming language A-0. In the 1960s,
John Backus’ FORTRAN became the first
wide-spread programming language. An-
other notable step was the development of
C by Dennis Richie in 1969. This is todays
standard in system programming and influ-
enced many later programming languages.
The object-oriented style of programming
became popular in the 1980s and 1990s with
C++ by Bjarne Stroustrup and Java by
James Gosling.

The common use of compilers is to trans-
form statements from high-level, machine-
independent programming languages into
low-level, machine-dependent instructions.
Code generators in model-driven software
development do the same on a more ab-
stract level. Their main difference to com-

mon compilers is that their input languages
are not of general purpose, but highly spe-
cialized to certain problems.

More information about compilers is
found in [ASULO6], a classic book on that
topic.

CASE tools. Computer-Aided Software
Engineering (CASE) is the idea of using
software to develop and maintain other
software. Such tools provide an environ-
ment to plan, model and describe software
solutions to a given problem. One impor-
tant aspect hereby is the graphical nota-
tion. The CASE tool creates, at least par-
tially, the software that solves the presented
problem.

CASE tools where invented at the begin-
ning of the 1980s. They had there most
popular time at the beginning of the 1990s,
but mostly failed because they delivered to
little to be useful for general software de-
velopment.

Ideas of CASE tools are found in today’s
Integrated Development Environment, e.g.
planning and modeling facilities. CASE
tools are often seen as the ancestors of
Model Driven Architecture.

XML. The FExtensible Markup Language
(XML) [W3(] is a file format for represent-
ing hierarchically-structured information.

The hierarchy is formed by tags. Each
tag can hold a set of attributes, where each
attribute can hold a value. The notation
is independent from the represented infor-
mation as it only defines the syntax, but
leaves semantics up to the actual applica-
tion. This gives XML a high flexibility and
allows for the independence of XML parsers
and stored data.

XML was invented by the World Wide
Web Consortium (W3C) in 1998. It is

the successor of the Standard General-
ized Markup Language (SGML). XML was
rapidly adopted as the standard syntax for
file formats in many domains.

Though XML is not directly related
to model-driven software development, it
is of some importance. Part of the
Model-Driven-Architecture specification is
the XML Metadata Interchange (XMI), an
XML-based file format for storing modeling
information.

Despite from information storage, XML
is frequently used for controlling applica-
tion behavior. Program components are
described in XML notation and then gen-
erated automatically by the application at
runtime. This technique shows strong sim-
ilarities to model-driven development.

An example is the creation of graphical
user interfaces. Instead of explicitly build-
ing an interface with source code, its ap-
pearance is described with XML syntax.
Each tag describes one element of the inter-
face, e.g. a button, menu, or list. The ap-
plication loads this description and builds
the interface accordingly. An example for
an XML interface builder is Glade [GLA].

Templates and Generics. Templates are
part of C++ [Str00] where they allow
for the parameterized implementation of
classes and functions. Instead of explicitly
implementing a class, the programmer im-
plements a template of the class where some
elements are given as parameters. e.g. data
types of properties, static array bounds, or
function objects.

To instantiate a template, the program-
mer supplies a concrete value for each pa-
rameter. The specialized template now de-
fines a C++ class or function and can be
used as such. This allows for a very high
flexibility and reusability, while the source

code is still type safe and fast.

An example of a template is the string
implementation that comes with C++.
The string is independent from the under-
lying data type of its characters. It can be
used similar to a common C string when in-
stantiated with char, but can also act as a
wide string when instantiated with short.

The template mechanism is related to
model-driven software development in such
that the compiler acts as a code genera-
tor when a template gets instantiated. The
template mechanism is Turing-complete
and can be used for functional program-
ming at compile time.

Generics are a mechanism of the Java
programming language [GJSB05|. They al-
low for the lexical substitution of tokens at
compile time. Generics do not have the ex-
pressive power of C+-+ templates, but are
similar to preprocessors in other languages.

UML 1. Version 1 of UML [Int05] is the
starting point from which Model Driven Ar-
chitecture was developed. It was defined in
the 1990s to unify several other notations
for the modeling and design of software.
Today, it is the standard notation in this
area.

Unlike version 2, UML 1 has no capabili-
ties for code generation and mainly focuses
on modeling. It allows for the description of
application states and some simple behav-
ior, but is not expressive enough to model
complete applications.

Many extensions from version 1 to 2 of
UML were made to support Model Driven
Architecture. Most of them are related
to the description of application behavior.
Additionally, the language was redefined as
an instance of the Meta Object Facility.

3 Concepts

This section presents the basic concepts of
Model Driven Architecture.

3.1 Meta Object Facility

The Meta Object Facility (MOF) is the
standard that defines the concepts of mod-
eling within the Model Driven Architecture.
It describes a hierarchy of 4 layers which are
upwardly named MO to M3. The properties
and behaviors of each layer are defined in
the layer on top of it. Figure 1 illustrates
this.

Meta-metamodel layer M3

instantiated to modeled by

Metamodel layer M2

instantiated to modeled by

Model layer M1

instantiated to modeled by

Information layer MO

Figure 1: The hierarchy of modeling layers
as defined by the Meta Object
Facility. Fach layer contains in-
stances of the models in the layer
above.

3.1.1 Information layer MO

The information layer MO can be seen as
the program in execution, i.e. an instance of
the modeled application. The output of MO
is therefore the solution of the developer’s
original real-world problem.

A program’s instance in MO consist of

e an executable representation,
e the program’s current state, and

e a set of resources, occupied by the pro-
gram.

An example of an application’s represen-
tative in MO is a running Java Virtual Ma-
chine. It consists of a set of instructions,
which have been loaded from an external
source, a stack that holds the processes
state, and its resources, e.g. virtual mem-
ory, open files, or network connections.

The Meta Object Facility does not spec-
ify the MO layer in detail. This is an imple-
mentation detail of the MDA framework.
One implementation could execute directly
on the hardware, while another might use
some virtual machine or high-level frame-
work.

3.1.2 Model layer M1

The model layer M1’s purpose is to allow
for the description of real-world problem to
the computer system. It is associated with
instances of modeling languages, e.g.
instance of an UML class.

The Meta Object Facility does not dic-
tate a modeling language. It encourages
the use of several distinct languages where
each language is optimized towards a spe-
cific problem domain. For object-oriented
designs, the MOF already defines the Uni-
fied Modeling Language. Section 3.1.3 dis-
cusses this topic in more detail.

an

Because complete modeling of an appli-
cation is often not possible, the layer M1
also has to be associated with program-
ming languages, e.g. Assembler, C, C++,
or Java.

In programming languages there exists
data structures and algorithms. Data
structures are used to represent entities of
the real world in a way that is accessible
by the computer. Algorithms connect data
structures and describe the interactions be-
tween them.

In Model Driven Architecture, data
structures and algorithms often do not ex-
ist explicitly, i.e. in form of a programming
language. If possible, any aspect of an ap-
plication should be contained in the model.
A concrete implementation is generated by
a transformation. Section 3.2 describes this
process in more detail.

An instance of a program’s M1 represen-
tation forms a model in M0. The instan-
tiation occurs when user executes the pro-
gram.

3.1.3 Metamodel layer M2

A metamodel is a model that describes an-
other model.

The metamodel layer M2 contains the
syntax and semantics of modeling lan-
guages. These are used for application
modeling in layer M1.

The intention is to allow for the defi-
nition of domain-specific languages (DSL),
i.e. very expressive notations which are op-
timized for certain problems. This makes
the modeling in layer M1 very compact. For
example, the EBNF, that was used in the
introduction, is a DSL for the description
of context-free grammars.

The MOF specifies version 2 of the Uni-
fied Modeling Language (UML) as part of
this layer. UML allows for the description

of a problem in a more abstract way then
common programming languages do. The
developer hereby specifies the program’s
components, e.g classes, and their interac-
tion in UML notation. UML provides struc-
tural and behavioral constructs for doing
this.

Structural constructs are used to define
static properties and structures of the pro-
gram. In layer M1, this is used to model
classes of an object-oriented programming
language, or data structures in general.
UML provides notations to model differ-
ent relations between classes or classes and
their properties. Some examples are

e associations,

e generalizations,

e attributes of classes, or

e multiplicities of properties.

Version 2 of UML was extended to make
the description of a model’s semantics pos-
sible. Such behavioral constructs describe
the behavior of the program and the ac-
tive interaction between its structural con-
structs. This can be associated with the
program’s logic or algorithms. Such state-
ments are generally referred to as FExe-
cutable UML. Tt allows for the modeling of
behavior such as

e actions,

e activities, i.e. sets of actions,
e state and state machines, or
® use cases.

UML also allows for the definition of pro-
files, a mechanism to extend its capabilities.
Profiles are sufficient for the specialization
or extension of existing constructs, but do
not allow for the definition of completely
new ones.

3.1.4 Meta-metamodel layer M3

The top-most layer is the meta-metamodel
layer M3. It is used to define distinct
domain-specific languages. The MOF spec-
ification is rather vague about M3 and does
not, even require its presence.

Defining constructs in M3 would in prin-
cipal require a hypothetical layer M4 which
would itself need a hypothetical layer M5.
and so on. To prevent this kind of infinite
recursion, the Meta Object Facility spec-
ifies the use of UML for the definition of
new DSLs. This is possible, because UML
itself is not only part of the MOF, but also
described by its own external specification.

3.2 Models, Platforms and
Transformations

An overview of the theoretical approach to
modeling has been presented in the previ-
ous sub-section. Now the focus is laid on
several aspects of this process.

3.2.1 Models

The programmer models the application as
a platform-independent model (PIM). As
the name suggests, this model does not ex-
pose details of an underlying platform.

Platform-independent modeling is done
with the languages from the metamodel
layer of the MOF stack. The OMG adver-
tises the UML to describe complete object-
oriented software designs, i.e. classes, class
hierarchies, interaction between them, as
well as the behavior of the system in cer-
tain situations.

The PIM cannot be executed directly.
It is therefore transformed to a platform-
specific model (PSM). Each PSM is specific
to the platform that it was created for. It
can only be executed on top of this plat-
form.

3.2.2 Platforms

A platform, in the sense of MDA, is a
base on where to generate platform-specific
models. This does not have to be a hard-
ware platform. Instead, it is more common
to create PSMs on top of the Java Envi-
ronment or some high-level domain-specific
system.

Finding the right kind of abstraction for
a platform can be complicated. If the plat-
form is very generic, it is possible to model
a wide range of applications on top of it.
On the other hand, the transformation from
the PIM to the PSM can become quite
large, because many details have to be han-
dled. The Java Environment is an example
thereof.

The opposite are platforms that are very
domain-specific. Modeling transformations
on top of these is rather simple if the plat-
form and the model relate to the same prob-
lem domain. Doing anything else is hard or
even impossible because the platform sim-
ple lacks the necessary facilities.

Platforms can roughly be divided into
three groups.

Components. Problem-oriented service
libraries are commonly referred to as
components. Components provide a set
of functions that are imported into an
application. The application calls them to
access the provided service. An example
of components are graphics-rendering

libraries, such as OpenGL [Khr].

Frameworks. A framework is a highly-
configurable library that implements a
generic solution to a general problem. The
application can register callback functions
to adapt the framework to a special in-
stance of the problem. The difference be-
tween components and frameworks is that

components are called by the application
frequently; frameworks are configured once
and then execute automatically. During the
execution the framework calls back into the
application via the provided callback func-
tions. An example of frameworks are GUI
widget libraries.

Middleware. Some platforms are neither
components nor frameworks. They are re-
ferred to with the more general term mid-
dleware.

3.2.3 Transformations

A transformation maps platform-
independent models to platform-specific
This process is also called model-
to-model transformation. It is done
automatically by a transformation tool.

Transformations are part of the layer M1
of the MOF hierarchy. A transformation
only changes the model’s syntactical rep-
resentation, but not its semantics. Hence,
transformations do not move between lay-
ers. Other layers can contain transforma-
tions too, but these are not covered by the
MOF standard. An example is some self-
modifying code on layer MO.

Transformations generally work in the
following way.

ones.

1. The transformation tool reads the
platform-independent model which is
written in a domain-specific language.

2. The tool checks for the input’s correct-
ness.

3. If it is correct, the transformation tool
builds an internal representation.

4. For each element in this represen-
tation, there is a rule of how to
map it onto the target platform in a

semantics-preserving way. The trans-
formation tool applies these transfor-
mation rules.

5. The generated platform-specific model
is written.

This is similar to the functionality of a
compiler?.

The changes in syntax can be quite ex-
tensive. For example, in the introduction,
an EBNF grammar description was trans-
formed into an implementation of a finite
state automaton.

It is possible that a platform-specific
model is not instantly executable. More
transformations can be applied or the
model can be linked with hand-written code
until the final application has been con-
structed. Again, all these actions do not
move between layers.

Because it is generated automatically,
the platform-specific model should not be
edited. If it happens that the PSM needs
to be changed by hand, a better approach is
to extend the syntax and semantics of the
domain-specific language to allow for the
solution of the problem in the PIM.

4 Tools

The OMG’s website lists several tools for
aiding MDA-based software development.
In this section a small evaluation of some of
them is presented. It is indented to give the
reader a general impression of what to ex-
pect when starting with Model Driven Ar-
chitecture.

The test candidates are Eclipse, openAr-
chitectureWare, and AndroMDA. Eclipse

is an Integrated Development Environment

3The only reason to name this process transfor-
mation instead of compiling is to distinguish
modeling from common programming.

and widely used by Java programmers. An-
droMDA and openArchitectureWare pro-
mote themselves as leading tools for model-
driven software development. Each of these
tools is in a mature state and appears to be
suitable for production use.

With each program some simple begin-
ner’s tasks are tried out. This consists of
1. installing the software, 2. using some
provided tutorial to create an application,
and 3. trying to extend the application in a
model-driven way. All tests where executed
on a Windows 2000 machine with the Sun’s
Java Development Kit 6.0 installed.

The author has been a Unix user for ap-
proximately 10 years. He has been writing
software for University and personal use in
C, C++ and Java in this environment. He
is a complete beginner to each of the appli-
cations, and does not have had any practi-
cal experience with Model Driven Architec-
ture before.

Please keep in mind that most of this sec-
tion is based on subjective experience.

4.1 Eclipse

Eclipse |Ecla] is an Integrated Development
Environment, available for Linux, Macin-
tosh and Windows. Eclipse is available as
open-source software under the terms of the
Eclipse Public License.

Model-driven software development in
Eclipse can be done with the Eclipse Mod-
eling Framework (EMF). This is a set of
plugins for Eclipse that include generators
for models and code.

Installation. The installation procedure
on Windows is very easy and consists of
downloading and decompressing an archive
file. Several pre-packaged editions of
Eclipse are available for download. They
are distinct from each other by the number

10

of included extensions. The Enterprise Edi-
tion 3.3.2 was chosen, as it comes with all
plugins and extensions available.

Basic usage. The second part of this test
is based on a tutorial [Eclb] for beginners,
available at the Eclipse website. It intro-
duces the EMF and shows how to create a
simple application for managing a library.
Users can add books and writers and con-
nect them. The application is executed as
a plugin in Eclipse.

The tutorial’s first step is to to create a
generator model, i.e. the model that is later
used to generate the application. There-
fore, the programmer has to write a Java in-
terface for book and writer classes. The in-
terface is annotated with some extra infor-
mation that allows the generator tool to fill
in the code and connect both classes. For
example, each book has a property writer
and each writer has a property books, which
is a list of associated books. The annota-
tions allow for the automatic matching of
both properties. If the user selects a spe-
cific author for a book, the book automat-
ically appears in the writers list of books.
The EMF framework generates all neces-
sary code.

In the second step, the generator model is
used to create a plugin for Eclipse that pro-
vides the application’s functionality to the
user. Again, the EMF framework creates
the source code automatically. The result-
ing application is shown in figure 2.

Extending. The third part of the test is
about adding a new component in a model-
driven fashion. The author decided to add a
new class Publisher that holds the name of
the publisher and a list of published books.
Additionally, each book should become a
new property publisher.

5] 2 2avae
BE outine 22 . -8
5 platformifresourcefibrarytestiy Jbr

=
I

Figure 2: The generated plugin runs in
Eclipse. The upper area shows
the books and writers in the li-
brary, the lower area allows for
the editing of their properties.

First it was tried to extend the genera-
tor model which appeared to be the most
model-driven style. Unfortunately, the au-
thor has not been able to figure out how to
do this. The generator model seems to be
static and not editable.

Then it was tried to extend the anno-
tated Java interfaces. The original inter-
faces where partially lost in the process of
creating the generator model. Therefore,
changes were added to the automatically
created versions. Rebuilding the plugin as
described in the tutorial worked seamlessly.
However, it was not possible to execute
the new version. Eclipse only provided the
old plugin, which had no information about
publishers.

Conclusion. On the positive side is that
following the beginner’s tutorial is really

easy. Impressive were the ease of instal-

11

lation and the quality of the tools which
worked out-of-the-box and exactly as de-
scribed in the text. No obvious bugs or er-
rors in the process were discoverable.

On the negative side is that the anno-
tated Java interfaces got overwritten when
the generator model were created. This de-
stroyed the original interface code. The au-
thor does not think that destroying hand-
written code is an acceptable behavior. The
second issue is that extending the model
was a failure. Maybe this is possible, but
it was not obvious of how to do it. The
fact that the original Java interfaces were
lost made it even impossible to start from
scratch.

Readers who already use Eclipse should
not have much work to try out EMF and
see if it fits their needs. At least it could be
useful for small or minor tasks, e.g. gener-
ating glue code between components.

4.2 AndroMDA

AndroMDA [Andb| is an MDA generator

framework. It is advertised with features

of

modularity,
support for various UML tools,

support for UML 1.4, and

support for many different platforms.

AndroMDA is licensed under the terms of
the Berkeley Software Distribution license.

Installation. The installation and usage
is described by a tutorial [Andal] on An-
droMDA’s website. It is very comprehen-
sive and describes every step in detail.

A possible problem is, that there are dif-
ferent versions of the tutorial. The author

first tried a version that seemed to be up-to-
date, but actually was too old to be useful
So the test had to be restarted
with a later version.

The installation of AndroMDA 3.2 is ex-
tensive and includes installing a package
manager, a database system, an UML mod-
eling tool, and several other, minor compo-
nents. It is notable that there are alterna-
tive implementations for most of these ap-
plications, including some with source code
available. It is unlikely that users will ever
encounter a vendor-lock-in scenario where
they depend on the availability of one con-
crete tool.

anymaore.

Basic usage. The tutorial describes the
creation of an application for managing
It is modeled with an UML
modeler and transformed into platform-
specific source code by AndroMDA.

time tables.

Again, the tutorial is very comprehensive
in each step. It even includes a preview
of the final application. Unfortunately, it
fails in small details. The user has to edit
several configuration files by hand. These
files” content sometimes differs from what
is described in the text. Therefore, one has
to make some guesses of how to modify the
configuration.

An external UML editor is used for mod-
eling the application. The author choose
ArgoUML [Col|, but several other tools are
supported too. This is a very good ap-
proach. Users can use there favorite UML
editor and are not limited by some internal
policy of AndroMDA.

Unfortunately, the tutorial’s content
strongly differs from the behavior of Ar-
goUML. It was not possible to create a new
project in the editor as described by the
text.

12

Conclusion. AndroMDA would have been
an interesting try, because it closely fol-
lows the idea of using common UML tools
for modeling. Unfortunately, AndroMDA’s
tutorial did not work. After having to
start twice and editing obscure configura-
tion files, the author finally gave up when
he encountered a problem with creating a
new UML project, which did not work as
advertised.

4.3 openArchitectureWare

openArchitectureWare |opeb| is another
framework that provides MDA modeler and
generator facilities. The website highlights
several features including

e transformations between models and
text,

Modeling front end,

full EMF integration,

full support for UML 2

syntax checking, and
e an online help system.

openArchitectureWare is free software
under the terms of the Lesser General Pub-
lic License.

Installation. For this test, version 4.3 of
the openArchitectureWare SDK is used.
The package consists of an archive file
which has to be extracted into Eclipse’s di-
rectory. It is then automatically integrated
into Eclipse.

Basic usage. openArchitectureWare is
build on top of Eclipse’s native EMF facil-
ities. The tutorial [opea| describes the cre-
ation of a meta model that is successively
transformed into running code.

The tutorial’s first step is to build a meta
model using Ecore, EMF’s built-in meta-
modeling package. For this task, Eclipse
contains a graphical editor, which is shown
in figure 3. Following the tutorial, this pro-
cess is very easy, but feels a bit cumber-
some.

[a]0 =

————

Figure 3: The Ecore editor. The upper area
contains elements of the meta
model, the lower area contains
their properties.

With the meta model in place, it is possi-
ble to generate the modeling code. This is
done automatically by EMF. The result is
a plugin which is then executed in Eclipse.
Running the plugin allows to model a con-
crete problem. In the case of the tutorial,
the problem consists of vehicles and per-
sons, where each person should be associ-
ated with a vehicle.

Modeling the problem is again done in
Eclipse. openArchitectureWare provides its
own project type. An instance thereof is
associated with the modeling code that was
built before. Again, a graphical editor turns
up that allows for the setup of different en-

13

tities and their attributes.

Having modeled the problem, it should
now be possible to execute openArchitec-
tureWare’s code generator and create an
application. Unfortunately, Eclipse was not
able to find the meta-model plugin. It was
built and loaded, but could not be included
into the dependency settings of the model
plugin. This step is shown in the tutorial,
but was not actually possible. The author
ran the code generator without the correct
dependency settings, but it failed with an
error message.

Conclusion. The installation is very easy.
Extracting Eclipse and openArchitecture-
Ware into the same directory is all that
needs to be done.

Creating the meta model and the model
in the editor is also very easy, but it was
found to be a rather repetitive task. In
contrast to the Eclipse test, extending this
model should not have been hard. The
graphical model editor would have been the
place of choice.

Unfortunately, it was not possible to
complete the test. It is not clear whether
the problem with the dependency settings
was related to openArchitectureWare or
Eclipse. Probably, an experienced user of
Eclipse would have been able to resolve this
problem.

openArchitectureWare looks quite ma-
ture. The author’s conclusion is that read-
ers, who have some experience with Eclipse
and want to try out MDA, should take a
look at openArchitectureWare.

5 Critique

Model Driven Architecture has received
some serious critique. This section presents
the critic’s main points. Some articles can

be found online at [Hay|, [Tho|, and [Fow]|.

UML. The use of UML is not suitable for
complete modeling of applications because
1. UML does not fully define semantics and
2. UML is not sufficient for every problem.

The OMG offers two solutions to the
problem of missing semantics. First, it is
possible to define semantics with Precise
Action Semantics, i.e. language constructs
for specifying semantics of UML models.
These languages differ between products
from different vendors. While the model
is independent from the platform it now
depends on the transformation tool. The
second solution is to leave semantics out
of the PIM and manually add code to the
generated PSM, which then implements se-
mantics. This has do be done whenever the
PSM changes. Both solutions strongly con-
tradict the ideas of model-driven software
development.

UML is insufficient for general use be-
cause it is targeted towards object-oriented
designs. For example, modeling a parser
generator, as described in the introduction,
is not possible with UML. This insufficiency
can be handled by creating new domain-
specific languages. Defining a DSL needs
the modeling tools to fully support MOF,
which is often not the case.

Tools. The tool support for MDA is in-
sufficient. Many tools do not fully support
the Meta Object Facility. The basic stan-
dards UML and XMI are widely supported,
but full MOF support requires the possibil-
ity to create new DSLs. Combined with the
problems of UML this makes MDA lose a

lot of expressiveness.

Usefulness. Another critique is related to
the general usefulness of MDA. One major

motivation behind MDA is the separation
of an application’s business logic from the
underlying platform.

The critic’s point is that this only makes
sense if the platform ages much faster then
the application. This seldom happens. Suc-
cessful platforms are developed and main-
tained for decades while applications eas-
ily change within years. The fact that
many platforms have open-source imple-
mentations® makes it even more likely that
an application’s platform will outlive the
application itself.

Initial cost. The initial costs for MDA-
based development are quite high. Instead
of only creating an application’s logic, i.e.
the PIM, the developers also need to define
the necessary transformations from PIM to
PSM. The fact that UML is not sufficient
for every scenario or unable to fully provide
semantics makes the situation even worse.
This extra development effort is likely to
increase the time to market, i.e. the time
between the planning of a product and its
launch. The longer the product is in de-
velopment, the more investment it takes,
and the more likely it is that competitors
release similar products. At the end, the
profit margin might be smaller if an MDA-
based development approach was chosen.

6 Conclusion

An overview of Model Driven Architecture
was presented. The paper started with
some widely-used examples of modeling and
model-driven development in Section 1. It
presented some MDA related technologies
and predecessors in Section 2. In Section
3, MDA’s concepts of modeling and trans-

formation were discussed. The author’s

14

4Java and .Net are the obvious examples here.

personal experiences with some MDA tools
were described in Section 4. Section 5 sum-
marized the critique of MDA-based devel-

opment.

References

[Anda|

[Andb]

[ASULO06]

[Col]

[Ecla]

[Eclb]

[Fow|

AndroMDA: AndroMDA.org
- Getting started Java.
http://galaxy.andromda.
org/index.php?option=
com_content&task=
category§ionid=11&id=
424Ttemid=89, visited
27th May 2008.

on

AndroMDA: AndroMDA.org -
Home. http://www.andromda.
org, visited on 27th May 2008.

Aho, Alfred V., Ravi Sethi, Jef-
frey D. Ullman, and Monica
S. Lam: Compilers: Principles,
Techniques, and Tools. Pear-
son Education Inc., 2nd edition,
2006.

CollabNet: argouml.tigris.org.
http://argouml.tigris.org,
visited on 27th May 2008.

Eclipse: Eclipse.org home. http:
//www.eclipse.org, visited on
27th May 2008.

Eclipse: Help - FEclipse SDK.
http://help.eclipse.org/
help33/index. jsp7topic=
/org.eclipse.emf.doc/
tutorials/clibmod/clibmod.
html, visited on 27th May 2008.

Fowler, Martin: Mod-
elDrivenArchitecture. http:
//martinfowler.com/bliki/

15

|GISBOS|

[GLA]

[GNU]

[Hay|

[Int96]

[Int05]

[Khr|

ModelDrivenArchitecture.
html.

Gosling, James, Bill Joy, Guy
Steele, and Gilad Bracha: The

Java Language Specification.
Prentice Hall, 3rd edition,
2005.

GLADE: Glade - a User Inter-
face Designer for GTK+ and
Gnome. http://glade.gnome.
org/, visited on 11th May 2008.

GNU: Bison - GNU parser gen-
erator. http://www.gnu.org/
software/bison/, visited on
3rd May 2008.

Haywood, Dan: MDA: Nice
idea, shame the...
http://www.theserverside.
com/tt/articles/article.
tss?1=MDA_Haywood.

about

International Organization
for Standardization: ISO/IEC
14977 International Organiza-
tion for Standardization, 1996.
http://www.cl.cam.ac.uk/
“mgk25/is0-14977 .pdf, visited
on 3rd May 2008, Extended
Backus-Naur form.

International Organization
for Standardization: ISO/IEC
19501. International Organiza-
tion for Standardization, 2005.
http://www.omg.org/spec/
UML/IS0/19501/PDF/, visited
on 27th May 2008, UML version
1.4.2.

Khronos: OpenGL. http:
//www.opengl.org, visited on
25th May 2008.

[OMGal

[OMGb]

[OMGc|

[OMGd]

[opea]

[opeb]

[Str00]

[Tho

(W3]

OMG: MDA. http:
//www.omng.org/mda, visited
on 3rd May 2008.

OMG: Object Management
Group. http://www.omg.org,
visited on 3rd May 2008.

OMG: Object Manage-
ment Group - UML.
http://www.uml.org, visited
on 3rd May 2008.

OMG: Welcome To The OMG'’s
CORBA Website. http://

www.omg.org/corba, visited on
3rd May 2008.

openArchitectureWare: 0 AW
Tutorial. http://www.eclipse.
org/gmt/oaw/doc/4.3/html/
contents/emf_tutorial.

htmltxurldatecomment
27th May 2008.

openArchitectureWare: ope-
nArchitecture Ware.org - Of-
ficial openArchitecture Ware
Homepage. http://wuw.
openarchitectureware.org,
visited on 27th May 2008.

Stroustrup, Bjarne: The
C++ Programming Language.
Addison-Wesley Professional,
3rd edition, 2000.

Thomas, Dave: UML
- Unified or Univer-
sal Modeling Language?
http://www. jot.fm/issues/
issue_2003_01/columni/,
visited on 27th May 2008.

W3C: Ezxtensible Markup
Language (XML). http:

16

//www.w3.org/xml, visited on
27th May 2008.

