
Abstract

How to implement concurrent, reliable system software with
transactions. Theory and practice.
Concurrency and error handling is usually complicated to
implement and test. In this presentation, we’ll see how both
can be handled by the transaction concept.
We’ll examine the I/O code of two example programs
implemented in C. We’ll first look at basic problems and
afterwards how transactions can help to solve these.
On the practical side, we’ll talk about the software picotm, a
system-level transaction manager for Posix systems.
Reimplementing the example programs on top of picotm will
make them thread-safe and less error prone.
Picotm can handle arbitrary resources. In the presentation’s
final part, we’ll look at the functionality that is currently
provided, such as transactional memory, C string and memory
functions, memory allocation, file-descriptor I/O, and others.

System-Level Transactions with picotm

Thomas Zimmermann

March 9, 2018

Handling Errors

Transitioning through consistent states; doing I/O in between.
1 i n t fd0 , fd1 ; /∗ f i l e d e s c r i p t o r s ∗/
2
3 char i b u f [1 0 0] ; /∗ i n p u t b u f f e r ∗/
4 char obuf [1 0 0] ; /∗ output b u f f e r ∗/
5
6 whi le (t r u e) {
7
8 wa i t_ fo r_ inpu t () ;
9

10 f i l l _ i n p u t _ b u f f e r (i b u f) ;
11
12 compute_output_buf fe r (i b u f , obuf) ;
13
14 w r i t e (fd0 , obuf , s i z e o f (obuf)) ;
15 w r i t e (fd1 , obuf , s i z e o f (obuf)) ;
16 }

Handling Concurrency

Two threads writing concurrently to the same file.
1 i n t f d ; /∗ f i l e d e s c r i p t o r ∗/
2
3 vo id thread_1_func () {
4 char obuf [1 0 0] ; /∗ output b u f f e r ∗/
5
6 compute_output_buf fe r (obuf) ; /∗ obuf = "42" ∗/
7
8 p w r i t e (fd , obuf , s i z e o f (obuf) , 2 5 6) ;
9 }

10
11 vo id thread_2_func () {
12 char i b u f [1 0 0] ; /∗ i n p u t b u f f e r ∗/
13
14 pread (fd , i b u f , s i z e o f (i b u f) , 2 5 6) ; /∗ i b u f = ? ∗/
15
16 p r o c e s s _ i n p u t _ b u f f e r (i b u f) ;
17 }

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.
Consistent Our first example shall output consistent data to both files.

Isolated Threads in our second example shall not interfere.
Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!
I Many databases around, but hardly anything for arbitrary

software.

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.

Consistent Our first example shall output consistent data to both files.
Isolated Threads in our second example shall not interfere.
Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!
I Many databases around, but hardly anything for arbitrary

software.

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.
Consistent Our first example shall output consistent data to both files.

Isolated Threads in our second example shall not interfere.
Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!
I Many databases around, but hardly anything for arbitrary

software.

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.
Consistent Our first example shall output consistent data to both files.

Isolated Threads in our second example shall not interfere.

Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!
I Many databases around, but hardly anything for arbitrary

software.

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.
Consistent Our first example shall output consistent data to both files.

Isolated Threads in our second example shall not interfere.
Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!
I Many databases around, but hardly anything for arbitrary

software.

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.
Consistent Our first example shall output consistent data to both files.

Isolated Threads in our second example shall not interfere.
Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!

I Many databases around, but hardly anything for arbitrary
software.

What We Actually Wanted

I To fix our examples, we have to ensure a number of
constraints.

Atomic Our second example shall not write partial strings.
Consistent Our first example shall output consistent data to both files.

Isolated Threads in our second example shall not interfere.
Durable Bonus point: Once we made a write, it should not disappear.

I So we actually wanted transactional semantics!
I Many databases around, but hardly anything for arbitrary

software.

Intermezzo: A Closer Look at pwrite()

ssize_t pwrite(int fd, const void* buf, size_t count, off_t
offset)

I Writes data to a specific location in a file
Execute Add data to transaction’s write set.
Apply Write-out data from write set to file during commit.
Undo Remove data from write set during roll back.

I Enter picotm *drum rolls*

Intermezzo: A Closer Look at pwrite()

ssize_t pwrite(int fd, const void* buf, size_t count, off_t
offset)

I Writes data to a specific location in a file

Execute Add data to transaction’s write set.
Apply Write-out data from write set to file during commit.
Undo Remove data from write set during roll back.

I Enter picotm *drum rolls*

Intermezzo: A Closer Look at pwrite()

ssize_t pwrite(int fd, const void* buf, size_t count, off_t
offset)

I Writes data to a specific location in a file
Execute Add data to transaction’s write set.
Apply Write-out data from write set to file during commit.
Undo Remove data from write set during roll back.

I Enter picotm *drum rolls*

Intermezzo: A Closer Look at pwrite()

ssize_t pwrite(int fd, const void* buf, size_t count, off_t
offset)

I Writes data to a specific location in a file
Execute Add data to transaction’s write set.
Apply Write-out data from write set to file during commit.
Undo Remove data from write set during roll back.

I Enter picotm *drum rolls*

Put into Practice with picotm

I picotm is a transaction manager for C applications and
firmware

Basic C interface of picotm
1 p icotm_beg in
2 /∗ e x e c u t i o n phase ; put your code he r e ∗/
3
4 picotm_commit /∗ commit phase ; p r o v i d e d by picotm ∗/
5
6 /∗ r e c o v e r y phase ; put your e r r o r h a n d l i n g he r e ∗/
7 picotm_end

Put into Practice with picotm

I picotm is a transaction manager for C applications and
firmware

Basic C interface of picotm
1 p icotm_beg in
2 /∗ e x e c u t i o n phase ; put your code he r e ∗/
3
4 picotm_commit /∗ commit phase ; p r o v i d e d by picotm ∗/
5
6 /∗ r e c o v e r y phase ; put your e r r o r h a n d l i n g he r e ∗/
7 picotm_end

Handling Errors, transactionally
Transitioning through consistent states; doing transactional I/O in
between.

1 i n t fd0 , fd1 ; /∗ f i l e d e s c r i p t o r s ∗/
2
3 char i b u f [1 0 0] ; /∗ i n p u t b u f f e r ∗/
4 char obuf [1 0 0] ; /∗ output b u f f e r ∗/
5
6 wh i l e (t r u e) {
7
8 w a i t _ f o r _ i n p u t () ;
9

10 p icotm_beg in
11
12 f i l l _ i n p u t _ b u f f e r _ t x (i b u f) ;
13
14 compute_output_buf fe r_tx (i b u f , obuf) ; /∗ does ma l loc_tx () and f r e e _ t x () ∗/
15
16 w r i t e _ t x (fd0 , obuf , s i z e o f (obuf)) ;
17 w r i t e _ t x (fd1 , obuf , s i z e o f (obuf)) ;
18
19 picotm_commit
20
21 i f (p i c o t m _ e r r o r _ i s _ n o n _ r e c o v e r a b l e ()) {
22 not ice_admin_and_abort () ;
23 } e l s e {
24 h a n d l e _ e r r o r _ a n d _ r e t r y () ;
25 p i c o t m _ r e s t a r t () ;
26 }
27
28 picotm_end
29 }

Transaction Log

I picotm keeps a log of all operations that are
I delayed until commit time, or
I reverted during a rollback.

Figure: The complete transaction log for example 1. Delayed operations
are displayed in Orange, revertable operations are in Light Blue.

Handling Concurrency, transactionally
Two threads writing transactionally to the same file.

1 i n t f d ; /∗ f i l e d e s c r i p t o r ∗/
2
3 vo id thread_1_func ()
4 {
5 p icotm_beg in
6 char obuf [1 0 0] ; /∗ output b u f f e r ∗/
7 compute_output_buf fe r_tx (obuf) ; /∗ obuf = "42" ∗/
8 p w r i t e _ t x (fd , obuf , s i z e o f (obuf) , 2 5 6) ;
9 picotm_commit

10 i f (p i c o t m _ e r r o r _ i s _ n o n _ r e c o v e r a b l e ()) {
11 not ice_admin_and_abort () ;
12 } e l s e {
13 h a n d l e _ e r r o r _ a n d _ r e t r y () ;
14 p i c o t m _ r e s t a r t () ;
15 }
16 picotm_end
17 }
18
19 vo id thread_2_func ()
20 {
21 char i b u f [1 0 0] ; /∗ i n p u t b u f f e r ∗/
22
23 p icotm_beg in
24 pread_tx (fd , i b u f , s i z e o f (i b u f) , 2 5 6) ; /∗ i b u f = "42" ∗/
25 picotm_commit
26 [. . .]
27 picotm_end
28
29 p r o c e s s _ i n p u t _ b u f f e r (i b u f) ;
30 }

Modules of picotm
I All application functionality is provided by modules
I Modules can be combined as needed
I New modules can be added

Module interface for interacting with picotm.
1 /∗ R e g i s t e r a module ∗/
2 s t r u c t picotm_module_ops {
3 p icotm_modu le_lock_funct ion l o c k ;
4 p icotm_module_un lock_funct ion un lock ;
5 p i co tm_modu l e_ i s_va l i d_ func t i on i s _ v a l i d ;
6 p icotm_module_app ly_funct ion app l y ;
7 picotm_module_undo_funct ion undo ;
8 p icotm_modu le_app ly_events_funct ion app l y_even t s ;
9 p icotm_module_undo_events_funct ion undo_events ;

10 picotm_module_update_cc_funct ion update_cc ;
11 p icotm_modu le_c lea r_cc_funct ion c l e a r _ c c ;
12 p i co tm_modu l e_ f i n i sh_ func t i on f i n i s h ;
13 p i co tm_modu l e_un in i t_ func t i on u n i n i t ;
14 } ;
15 uns igned long
16 p i co tm_reg i s t e r_modu l e (const s t r u c t picotm_module_ops ∗ ops) ;
17
18 /∗ Append even t to t r a n s a c t i o n l o g ∗/
19 vo id
20 picotm_append_event (uns igned long module , uns igned long op , u i n t p t r _ t c o o k i e) ;
21
22 /∗ I n fo rm picotm about an e r r o r ∗/
23 vo id
24 p i co tm_recove r_f rom_er ro r (const s t r u c t p i co tm_er ro r ∗ e r r o r) ;

Transactional Memory

I load_tx()
I store_tx()
I privatize_tx()

1 i n t tx_x = 1 ;
2
3 p icotm_beg in
4 i n t x = l o a d _ i n t _ t x (&tx_x) ;
5 x += 1 ;
6 s t o r e _ i n t _ t x (&tx_x , x) ;
7 picotm_commit
8 [. . .]
9 picotm_end

String and Memory helpers

I memcpy_tx(), memcmp_tx(), etc.
I strcpy_tx(), strcmp_tx(), etc.

1 char tx_buf [2 0] ;
2
3 p icotm_beg in
4 memset_tx (tx_buf , 0 , s i z e o f (tx_buf)) ;
5 picotm_commit
6 [. . .]
7 picotm_end

Memory Allocation

I malloc_tx()
I free_tx()

1 p icotm_beg in
2 char ∗ buf = mal loc_tx (2 0) ;
3 /∗ do someth ing wi th ’ buf ’ ∗/
4 f r e e _ t x (buf) ;
5 picotm_commit
6 [. . .]
7 picotm_end

Safe Type Casting and Arithmetic

I No more overflows, underflows or div-by-zero errors

1 i n t tx_x = 1 ;
2
3 p icotm_beg in
4 i n t x = l o a d _ i n t _ t x (&tx_x) ;
5 sho r t x16 = cas t_ in t_to_sho r t_tx (x) ;
6
7 x16 = mul_short_tx (x16 , 2) ;
8 x16 = add_short_tx (x16 , 5) ;
9 x16 = d i v _ s h o r t _ t x (x16 , 3) ;

10
11 x = cas t_sho r t_to_ in t_tx (x16) ; /∗ a lways c o r r e c t ac to C Standard ∗/
12
13 s t o r e _ i n t _ t x (&tx_x , x) ;
14 picotm_commit
15 [. . .]
16 picotm_end

Data Structures

I Transactional lists, queues, multisets, stacks
I Interfaces similar to C++ STL

1 s t r u c t t x l i s t _ s t a t e t x _ l i s t _ s t a t e ; /∗ non−t r a n s a c t i o n a l l i s t s t a t e ∗/
2
3 p icotm_beg in
4 s t r u c t t x l i s t _ e n t r y ∗ e n t r y = mal loc_tx (s i z e o f (∗ e n t r y)) ;
5 t x l i s t _ e n t r y _ i n i t _ t m (e n t r y) ;
6
7 s t r u c t t x l i s t ∗ l i s t = t x l i s t _ o f _ s t a t e _ t x (& t x _ l i s t _ s t a t e) ;
8
9 t x l i s t _ p u s h _ b a c k _ t x (l i s t , e n t r y) ;

10 picotm_commit
11 [. . .]
12 picotm_end

File I/O

I open_tx(), close_tx()
I read_tx(), write_tx()
I pread_tx(), pwrite_tx()

1 i n t f d ; /∗ f i l e d e s c r i p t o r ∗/
2 char buf [2 0] ;
3
4 p icotm_beg in
5 read_tx (fd , buf , s i z e o f (buf)) ;
6 picotm_commit
7 [. . .]
8 picotm_end

Others

I errno
I C Standard Math Library

I Math functions
I Floating-Point environment
I Floating-Point exceptions

I Some VFS support

Ideas and TODO List

I Support for tiny systems
I Unix signal handling

I SIGSEG, SIGBUS, SIGILL
I 2-phase commits

I Data formats
I Network protocols

Summary

I Transactional code is safer and less error prone than
traditional one.

I Implement error handling and concurency control exactly once.

I picotm is available as Open Source at
I picotm.org

I More information, tutorials, background on my blog at
I transactionblog.org
I twitter.com/transactionblog

I Or reach out to me via
I tdz@users.sourceforge.net

http://picotm.org
http://transactionblog.org
http://twitter.com/transactionblog
mailto:tdz@users.sourceforge.net

picotm.org

http://picotm.org

