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Abstract

A new approach to provide reliable security to web-based applications is presented.
These web applications, i.e. websites that are generally referred to as Web 2.0., are
composed from a set of web pages and scripts that are executed in a web browser. Un-
fortunately, today’s web browsers no not provide effective security mechanisms. This
work describes a mechanism that allows for the easy implementation of a given secu-
rity policy, combined with high usability and portability between browsers. The web
application, its input channels, and output channels are separated from the browser and
installed on an isolated, trusted software stack on the user’s computer. The application
is then embedded into a web page by using the browser’s plugin mechanism.
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1 Introduction

1.1 Motivation

Before and in the beginning of the World-Wide Web, most software applications were
locally installed binaries. Their installation was commonly done by the system’s admin-
istrator or a privileged user.

Some of these applications contained malware programs, i.e. programs that provided
some non-advertised service with the intend to harm the user. This was not much of a
problem at that time because computers were weakly connected and the installation of
malware programs could be prevented easily by following some simple rules, e.g. using
a virus scanner on all executables or compiling the binary from reviewed source code.

Applications running concurrently on the user’s computer, were separated by the
boundaries of virtual address spaces. Access to files or resources was restricted by some
form of access control. This alone often lowered the damage done by malware programs
to single user accounts or resources.

Over the last decade, the development of various techniques, made it possible to
move applications towards the World-Wide Web. Such web-based applications are quite
common today. There are interfaces for mailboxes or news services and even complete
office suites and image manipulation software is available on the web.

Web-based applications consist of some web pages and a set of scripts and plugins
which are loaded from an HTTP server and executed in a web browser.

While being some of the most flexible and often used application on today’s computer
systems, browsers do not provide any effective security mechanisms by default. All
websites are loaded into the same address space. If not very special care is taken, for
example the content of an online banking application could be accessible by another
loaded website. Also, many users store their passwords in a local keyring. This is loaded
by the browser and unlocked by the user entering his/her master password. Once the
password is entered, the keyring’s content could be exposed to any software, that has
access to the browser’s address space. Section 1.3 gives some ideas of how this could be
achieved.

Another problem is the fact that all common user interfaces, e.g. X11 or the Windows
desktop, are not designed with security in mind. The basic problem is that all running
applications can read all input and output devices at any time they want. This makes
it very easy for an attacker to spy for security-sensitive data, if he/she has access to the
user interface.

Much work had been done to secure the channel between two computer systems, but in
many cases the systems themselves are the weak spots. Matt Bishop gave a description
of the problem [Bis03]:

1



1 Introduction

Cryptography provides a mechanism for [...] preventing unauthorized peo-
ple from reading and altering messages on a network. [...] The canonical
example is the use of cryptography to secure communications between two
low-security systems. If only trusted users can access the two systems, cryp-
tography protects messages in transit. But if untrusted users can access
either system (through authorized accounts or, more likely, by breaking in),
the cryptography is not sufficient to protect the messages. The attacker can
read the messages at either endpoint.

Bruce Schneier has a similar opinion. In a discussion [Sch07] with Marcus Ranum he
said:

You [Marcus Ranum] are right about the endpoints not getting any better.
I’ve written again and again how measure[s] like two-factor authentication
aren’t going to make electronic banking any more secure. The problem is if
someone has stuck a Trojan on your computer, it doesn’t matter how many
ways you authenticate to the ban[n]ing server; the Trojan is going to perform
illicit transactions after you authenticate.

It’s the same with a lot of our secure protocols. SSL, SSH, PGP and so on
all assume the endpoints are secure, and the threat is in the communications
system. But we know the real risks are the endpoints.

This work’s intend is to improve the security at the user’s endpoint. This is done by
working out which components and system services need to be trusted and providing a
framework that allows for programming of secure, web-based applications.

1.2 Definitions

Because this work is related towards security, this term needs to be further specified. I
follow the definition given by Matt Bishop [Bis03]. Here security consists of

• confidentiality,

• integrity, and

• availability.

Confidentiality is the concealment of information or resources. This is done by provid-
ing some sort of access control. Only authorized users are allowed to read the confidential
data. An example of such a mechanism is an encrypted disk drive where users have to
enter a password when mounting the disk. Only authorized users should have this pass-
word. If an unauthorized user obtains the password then the confidentiality policy is
compromised.

Integrity reflects the level of trustworthiness. This typically means that no unautho-
rized user is allowed to change data, especially not unnoticed. One can further distin-
guish between source integrity and data integrity. The former refers to the source of an
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information as being integer, i.e. to be the one it claims to be. The second refers to the
data as being integer, e.g. not receiving a 0 if a 1 was send without noticing the change.

Availability describes the chance of getting a requested service. The higher this chance
is, the higher is the availability.

Further, some security-related terms need to be defined. A security policy is a set
of rules, formal or informal, that describe the security properties of a system. A sys-
tem that reliably implements a security policy is called a secure system. Because it is
hard to formally prove the correctness of systems, this reliability often comes from the
user’s believe in a system’s security. A system that is believed to be secure is called a
trusted system. The Trusted Computing Base (TCB) of a system is the minimal set of
components in which the user has to trust. Its complexity is measured in lines of code.

1.3 Examples

This section gives some example attacks on web-based applications. The first two both
are based on the design of the underlying user interface, i.e. X11, which does not provide
isolation between its applications. The third example describes how an attacker could
expose security-sensitive data by using the browser’s plugin mechanism to get access to
the browser’s address space. A more formal problem description is then given in Section
1.4.

1.3.1 Logging User Input in X11

Input logging is a possible attack on the confidentiality policy of information entered
by the user. Most users trust their user interface to deliver the entered information to
exactly the application it is intended for. Unfortunately, this is not the case with today’s
common window systems.

Logging input in X11 is very easy. Each application connects to the X server and
opens one or more windows on the screen. Input is then communicated from the X
server to the application by sending event messages. In the X server’s default setup, any
application receives any input event. It is the application’s task to filter out those events
that are received by its own windows. In this design an application can also listen for
events received by other application’s windows.

The famous program xeyes is a good example of how this works. Xeyes tracks the
pointer’s position on the screen by listening for events of type MotionNotify. It then
displays a pair of eyes on the screen where the eyeballs watch the pointer’s current
position. Figure 1.1 illustrates this.

If an attacker listens for events of type KeyPress instead of MotionNotify, he/she can
log the user’s complete keyboard input. This makes it very easy to spy for passwords or
other confidential information.

The only solution X provides to overcome this problem, is to let an application grab
an input device. This applications then receives the input from the device exclusively.
Only one application can grab an input device at a time and any other application that
wants to grab it, has to wait until the grabber releases it.
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Figure 1.1: Xeyes, watching the web browser.

This mechanism can be used to separate single application’s input from each other
but does not provide sufficient isolation between components of the same application.
Instead the mechanism’s all-or-nothing strategy for grabbing is a good opportunity for
a denial-of-service attack. Here an attacker grabs a device but never releases it.

1.3.2 Logging Output in X11

Output logging is another possible attack on a confidentiality policy of information.
While input logging is a way to get confidential information entered by the user, output
logging can be used to retrieve confidential information that is delivered to the user, e.g.
data from online banking applications or the user’s encrypted emails.

Output logging in an X environment is almost as simple as input logging. In a first
step the spying application makes a screenshot of the screen. Again the default setup of
the X server does not provide any mechanism to prevent this.

In a second step, the application applies a pattern recognition algorithm to the screen-
shot to filter out the information it is interested in. This is a complex problem. Text
or image recognition software can be slow when applied to large data sets. A possible
optimization is to reduce the screenshot to some subsection or to reduce the resolution.

1.3.3 Compromising Mozilla Plugins

This section gives a description of how to get access to the web browser’s address space
by using the browser’s plugin mechanism. Further it describes an easy way of how
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to spy on other running plugin’s content. Some technical details in this section refers
to browsers of the Mozilla family, e.g. Netscape or Firefox, or some alternatives with
compatible plugin interfaces.

An attacker can get access to a web browser’s address space by writing a plugin which
is then loaded by the browser. To get loaded by the browser, the plugin has to be
installed on the end user’s computer and a website has to request an instance of it.

The hardest part is likely for an attacker to get his/her malicious plugin library in-
stalled on the user’s computer. This can be done by using a phishing website, where
visitors are coerced to download the plugin’s binary by making them believe they need
this binary to use the provided service.

Once installed and loaded, the plugin can modify the browser settings to get loaded
each time the browser starts. A simple idea for such a modification is to change the
browser’s default web page, which is loaded on each startup automatically. Here, the
malicious plugin replaces the default page with one that starts the plugin. This way, the
plugin code gets executed on each browser startup.

To easily expose the content of other running plugins, an attacker could attempt to
break security by using the plugin mechanism itself. This can be done by using some
sort of man-in-the-middle attack, as illustrated in Figure 1.2. Here the attacker’s plugin
sits between the browser and the actual plugin that implements the service, which is
called service plugin from now one.

Figure 1.2: A malicious plugin, loaded between browser and service plugin, controls their
communication.

Mozilla browsers have a set of standard rules, where to look for plugin libraries. The
algorithm looks at the following locations:

1. A global directory, e.g. /usr/lib/mozilla/plugins,

2. The directories stored in the environment variable MOZ_PLUGIN_PATH, and
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3. A place in the user’s home directory, namely $(HOME)/.mozilla/plugins.

To get his/her plugin loaded between the browser and the service plugin, the attacker
needs to make sure that it is found first, according to the search rules1.

By copying itself into the user’s home directory and cleverly modifying the content of
MOZ_PLUGIN_PATH, the malicious plugin can control all other plugins, except those that
are globally available.

The attacker’s plugin then registers itself for the service plugin’s MIME content type
[FB96]. From now on the browser will start an instance of the attacker’s plugin whenever
a website requests an instance of the service plugin. This is a possible violation of an
integrity policy.

An attacker can find the service plugin by using the same search heuristic as the
browser. This way he/she can load the service plugin later on and let it provide the
desired functionality. This makes it almost impossible to detect such a man-in-the-
middle attack for any common end user.

Depending on the concrete intention of such an attack, it can compromise any of the
three foundations of security. An attacker, who is interested in breaking the confiden-
tiality of a secret stored by an instance of the service plugin, can log the content of this
instance’s memory.

Logging the content of dynamically allocated memory is simple. Browser and plugin
communicate via a set of function pointers. These pointers are exchanged during the
plugin’s initialization. Two of these functions, NPP_Alloc and NPP_Free, are used for
handling of dynamically allocated memory. The attacker sits between the browser and
the service plugin’s instance. During the initialization, he/she replaces the memory-
function pointers with his/her own implementations and can now observe the instance’s
dynamically allocated memory.

Another attack can be used to examine the values on the program’s stack. Here
the attacker makes regular snapshots of the stack content and searches it for security
sensitive data. An attacker does not need the observe the stack all the time, but only
when the plugin’s code gets executed. He/She knows when this happens because he/she
controls the set of function pointers that connect the browser and the plugin instance.

Newer browser versions implement a more object-oriented approach, where interfaces
are provided by service-manager classes. The setup is still done with the basic API, so
an attacker can provide his/her own implementations of these classes.

When I prepared this work, I implemented a plugin to prove these statements. The
plugin, once installed, searches for plugin libraries and registers itself for their content
types. Whenever the browser opens a website that uses a service plugin, the browser
loads my plugin. This, in turn, loads the actual service plugin’s library which provides
the requested service to the browser. Neither browser nor plugin notice that my plugin
sits between them, acts like a man-in-the-middle and traces their API function calls,
including arguments and return values.

1The order in which the locations are processed can vary between different browsers. Some, e.g.
Iceweasel 2, first load the plugins in the user’s local directory. This behavior allows for the control
of global plugins as well.
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The bottom line of this section is that a plugin implementing a secure service cannot
trust its environment because the environment could be controlled by an attacker.

1.4 Problem and Solution

The given examples illustrate that web browsers do not provide adequate isolation be-
tween trusted and untrusted context’ to make them suitable for working with security-
sensitive data.

On one side, this is related to the security-weak environments that browsers are run-
ning in, e.g. the X Window System. These do not provide their applications with secure
channels for input and output. An untrusted application can read any other application’s
input and output.

On the other side, the problem arises of the browser itself. The architecture of common
web browsers allows for the loading of external code from untrusted sources. Such plugins
are not well separated from each other and their environment but run in the browser’s
address space and therefore have the same access permissions as the browser does.

My approach to solve these problems is to isolate the security-sensitive components
of web applications and put them in a distinct environment that is trusted to be secure
with respect to a given security police. The web browser, running in an untrusted
environment, interacts with the trusted web application via its Plugin API.

A website can use the application by instancing a web-browser plugin. I provide a
software framework that does all setup and communication between the web browser
and the trusted application. Special care is taken to ensure that the untrusted parts of
the system can not compromise the trusted ones.

The trusted part of the system is based on an L4 microkernel. The L4 software stack
provides software components that allow for the isolation of distinct security contexts
from each other. Especially it provides a secure input and output channel between the
application and the end user. The L4 stack has a small Trusted Computing Base of circa
300.000 lines of code. This makes it less error prone than the common web browser and
its environment which has several million lines of code.

1.5 Overview

The rest of this document is organized as follows:
Chapter 2 introduces some previous attempts to solve the problems described above.

I will summarize each approach and also examine its weaknesses.
The design for providing a secure environment to web applications is described in

Chapter 3. Based on the weaknesses of the other approaches, first a set of design goals
is derived. Then it is presented of how to realize these goals.

An implementation is given is Chapter 4. Is is based on an L4 microkernel environment
and features a small Trusted Computing Base while allowing a very flexible usage.

Chapter 5 evaluates the design and implementation. It mainly discusses the improve-
ments in security but also contains some information about the implementation’s over-
head.
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Some ideas for future work on this topic are given in Chapter 6. One is to write a web
application realized with the presented design. Another idea is to extent the current
implementation and port is to other systems.

Chapter 7 concludes the work.
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2 Related Work

There does not seem to be intensive research on reliable security in web applications
yet. Many solutions in that field are build around virtual machines, such as Java or
Java Script. These projects mostly try to solve a different problem. They isolate the
application from its environment but not vice versa. For example, a program on the
user’s computer can receive the user’s input into a Java application, even though the
application runs in a virtual machine.

There are, however, a few research projects that focus on solving various aspects of
the problem which is discussed here.

2.1 Flask on Top of XACE

A possible solution to the security problems described in Chapter 1 is presented in
[Wal07]. The author uses the Flask Architecture’s [SSL+99] security modules on top
of the X Access Control Extension (XACE) [Wal06] to restrict access permissions of X
clients.

The Flask Architecture is a mechanism for implementing fine-grained security in the
operating system. The system provides a security server that implements a security
policy and an object manager that enforces this policy. An client that wants to interact
with the system, has to query the object server for permission. The object server itself
queries the security server to decide about the client’s query. Depending on the active
security policy, the server either decides to authorize the query or not. If the query is
authorized, the object manager delegates the permission to the client. Permissions can
be revoked later on.

Flask was originally developed for the Fluke microkernel system [FHL+96], but it has
been ported to Linux and is now implemented by SELinux [SVS06].

XACE is a generalization of former approaches to X11 security, e.g. SECURITY
[Wig96] and Xtsol [sun]. In itself, it does not provide any security policies or take any
decisions. It provides a set of hooks into the X server, such that third-party security
extensions can interact with its internals. Whenever the X server gets a request from a
client, it queries the registered security extension to decide about the request’s validity.
Only permitted requests are then executed by the X server.

XACE allows the security extension to examine all common types of events, such
as core and extension-protocol requests, resource access, mapping and unmapping of
windows, access to drawables and input devices.

By combining XACE and Flask, one can control the access permissions of X clients,
based on a system-wide policy.

A typical scenario is an X server running on SELinux. It loads its Flask module on
startup and registers its callbacks. On each client request, it calls the respective callback
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function, which than queries the SELinux’ object manager. The object manager itself
queries the security server to make the decision whether the X client’s request should
be permitted or not. The policy, implemented by this security server, is given by the
system’s administrator.

The combination of Flask and XACE is useful for securing X applications against each
other but does not solve the security weaknesses of web-based applications because of
the following disadvantages:

• The major disadvantage of this approach is that it only prevents simple attacks
such as key logging or grabbing screenshots, i.e. attacks that use the security
deficiencies of X.

• It does especially not provide any barrier between context’ within the same applica-
tion. If the attack comes from the inside of an application, i.e. another component
in the same address space, it is still possible for the attacker to log an application’s
interaction with the X Window System.

• The approach does not prevent attacks on other low-level services or resource usage,
such as denial-of-service or buffer overflows. For example if a loaded web page can
somehow crash the browser or exploit a security hole, XACE does not help in any
way.

• Additionally the Trusted Computing Base is large. It consists of a full Linux
environment with hardware drivers, system services and an X server, which results
in an estimated size of 10 to 20 million lines of code.

2.2 DarpaBrowser

The DarpaBrowser [SM02] is an approach to apply the Rule Of Least Privilege to the
internals of a web browser. It is part of a larger solution called CapDesk which is based
on Java and runs on common operating systems, such as Windows and Linux.

The idea behind DarpaBrowser is to separate all components of the web browser and
the environment and assign individual capabilities to each component. For example, a
component of a web browser that is only used for surfing the World-Wide Web does not
need access to the user’s local files. Another component that is only used for reading
local files does not need access to the computer’s network connection.

For every such action there exists a capability in the system. If a component is about
to do an activity for which it does not own the necessary capability, the user is asked to
assign permission or deny the request.

This approach is powerful enough to address many of the problems mentioned in the
previous section, but it also has several disadvantages:

• With DarpaBrowser’s design, security contradicts usability. Whenever a compo-
nent demands special capabilities, the user has to decide whether the concerned
action is allowed or not. Depending on the user’s knowledge this decision may be
too difficult. Although the project report specifies some general rules of thumb
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for such decisions, one cannot expect the user to know when a component needs a
capability and when it does not.

• DarpaBrowser is not a drop-in replacement for today’s common browser software.
Its components were developed especially for this project and the user cannot re-
place some of them by versions of his favorite web browser. Given the enormous
number of today’s web technologies, this is a serious problem in terms of mainte-
nance.

• The software runs in a non-trustworthy environment. Because of the weak foun-
dation, provided by the underlying operating system, the browser is still exposed
to attacks, e.g. third-party software, installed on the user’s computer system, can
easily log key strokes or grab screenshots.

• Again, the Trusted Computing Base is large. It consists of the operating system
(i.e. Windows/Linux), a Java Environment, an interpreter for the programming
language E and its own environment Edesk. This results in a TCB which I estimate
to be of 25 to 50 million lines of code.

A more detailed review of DarpaBrowser can be found in [WT02]. My conclusion is
that DarpaBrowser’s approach is fine for securing the web browsers internals against
each other, but does not provide sufficient protection against threats on the OS level.

2.3 Web Browsers in MashupOS

Another approach to build a secure environment for web applications is part of Mashu-
pOS [WFHJ07], a project by Microsoft Research. Instead of trying to solve the security
problems on the level of the operating system, it focuses on improving the capabilities
of the web browser and HTML.

MashupOS attempts to build a browser system that allows for multiple principals in
the same browser process at the same time. It uses a modified version of the Internet
Explorer. The modification mainly consists of an extension to the HTML parser and an
implementation of a system of virtual machines that provide isolation of contexts and
allow for the fine-grained setup of resources.

Two different types of virtual machines are supported by MashupOS. A sandbox can
be used to isolate content from its containing web page, such that it cannot escape. In
contrast, a service instance can be used by content to isolate itself from its surrounding
container, such that the container cannot get in.

Both types of virtual machines are implemented by the web browser, which therefore
needs to be trusted by either container and content.

To create an instance of a virtual machine, container or content use special HTML
tags that describe the requested service. Each instance of such a virtual machine is
provided with its own set of resources. These resources are memory, persistent state
information, i.e. cookies, Document-Object-Model resources, and network connections.
For each resource there exist rules of how the virtual machine’s content can interact with
this resource.
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MashupOS is quite powerful with respect to the isolation of distinct security contexts
within the browser but is also has several disadvantages:

• Content and container need to trust the web browser. This is not a good assump-
tion, because if the browser or its environment is compromised, security-sensitive
data might be exposed. An example of how to compromise the web browser is
given in Section 1.3.

• The designers choose to use a modified version of HTML. Web pages that use
this dialect of HTML are unlikely to display correctly on any browser that does
not implement MashupOS. Because there are already many incompatible or half-
standardized version of HTML and HTML parsers, website authors have to take
special care to ensure portability of their content between different browsers. These
circumstances are likely to hinder the adoption of another HTML dialect.

• Like the example of DarpaBrowser, MashupOS suffers from its security-weak en-
vironment and large Trusted Computing Base of estimated 25 to 50 million lines
of code.

MashupOS is not suitable to solve the presented security problems of web-based appli-
cations, because all content and containers need to rely on the browser’s trustworthiness.

Nevertheless, a browser-independent and standardized version, implemented on top
of a more light-weight code base, can improve security in web applications considerably,
while keeping it easy for authors to create web pages.
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Neither the web browser nor the underlying user interface is designed to provide security-
sensitive web applications with an environment that does not allow for the abuse of an
established security policy. Providing such an environment is the problem that this work
is going to solve.

This chapter presents a new design approach to the security of browser-based appli-
cations. In Section 3.1, the goals of this design are introduced and in Section 3.2, it is
shown of how to achieve these goals.

3.1 Design Goals

This design’s major intention is to provide the benefits of the examples given in Chapter
2, while improving or fixing most of their drawbacks. Examining these examples, I see
three major goals to achieve. These are

• improved enforcement of security policies, with respect to the definition given in
Section 1.2,

• browser independence, and

• good usability.

The rest of this section discusses each of these goals.

3.1.1 Improved Security Policy Enforcement

Security has been defined in terms of

• confidentiality,

• integrity, and

• availability.

A system that reliably implements a security policy concerning these properties is
called a secure system with respect to this policy.

Because improving security is the principal motivation behind this work, the way of
being secure needs to be further examined. For implementing a secure application, i.e.
an application that reliably implements a given security policy, one needs to provide at
least three different security contexts that are designed to follow the given paradigms.
These are

13
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• the operating system,

• the application’s environment, i.e. the web browser and system services, and

• the application itself.

The design and implementation of all these components needs to allow for the imple-
mentation of a security policy, e.g. a policy that requests the restriction of file access is
not implementable on systems that do not have a notion of file access permissions.

Design and implementation should also not contradict the security policy. If a policy
requests the authentication of a user by login, any system with a login mechanism can
implement this policy. If there is, for some reason, an anonymous guest account with
sufficient access permissions, the system contradicts the security policy, e.g. Windows
95 shows such a behavior by default.

This work only deals with the local environment of secure web applications. It does
not deal with securing the application itself or the underlying operating system. From
now on, it is assumed that each of these components in the software stack allows for the
implementation of a given security policy and does not contradict it. It is also assumed
that communication over a network is secure, e.g by using an encryption mechanism.

The basic idea of this work is to provide a secure environment to the web application
by separating

• address spaces,

• input channels, and

• output channels,

of both, web browser and security-sensitive application. The application is executed
in a trusted software environment, isolated from the rest of the system. It does almost
all interactions within this environment and does not use any untrusted services. Com-
munication between the browser and the application is reduced to a minimum. Section
3.2 discusses these concepts in detail.

3.1.2 Browser Independence

A browser-independent solution is a software component that can be used with most web
browsers without the need for customization of the browser or the component itself.

This is crucial to make effective use of the software. Today’s typical web browsers
consist of several million lines of code. Even forking and adapting single components is
an enormous task in terms of cost and maintenance.

Additionally, given the large number of network protocols, file types and web tech-
nologies that modern web browsers need to handle, it is illusory to build a specialized
version of a browser while trying to keep up with the latest developments in that field.

Browser independence also means that one cannot change the syntax or semantics
of the HTML document format. This would break compatibility with other vendor’s
browser software and web designers would hardly adopt such a technology.
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Given the strict isolation between browser and web application, a browser-independent
mechanism is needed to reconnect them for some minimal interaction that is needed.

In this work, I solved that problem by designing the connection mechanism on top of
the plugin mechanism provided by modern web browsers. Hereby a website can use a
trusted web-application by instancing a plugin which connects to the secure application
in the trusted environment. While plugins are not fully browser independent, they are
at least quite portable and do not require any modification to the browser’s code base.

3.1.3 Good Usability

Usability refers to the ease of working with a software program. The more affordable it
is for a user to achieve his/her intended goal, the more usable a software is.

Security sometimes contradicts usability. Experience [Yee03] shows that users typically
will not use secure software solutions if they are too complicated to understand or use.
Especially if the software requires some effort by the user to provide security, the user will
often choose the insecure option. Remember the example of DarpaBrowser in Chapter 2.
DarpaBrowser explicitly asks the end user to grant permission to a software component.
He/She now needs to figure out if the requested permission is really required or not. This
is not trivial in most cases. Even deciding by some rules of thumbs is more complicated
for the user than just granting the permission without a second thought.

Another point is the good integration into the visual appearance of the system. The
trusted component’s interface should behave as the rest of the system does. Ideally the
user should not even notice that he/she is working in a security-sensitive context. If the
trusted application’s interface behaves the way the untrusted browser’s interface does,
the user only has to learn one interface paradigm, instead of two. This will make the
software more accessible and will increase its adoption by end users.

Having separated the browser and the security-sensitive web application, their visual
interfaces need to be reunited to make them appear as being one application.

In this design, the browser uses a plugin to connect to the secure application. Such a
plugin’s instance has a visual representative that is part of the surrounding web page,
i.e. a window of the native, non-trustworthy user interface. The application has its own,
separated representative that provides a secure, trustworthy channel between itself and
the end user.

The idea is to synchronize the visual representatives of plugin and application. The
application’s representative is always displayed in front of the plugin’s representative. If
the plugin’s representative is moved, the application’s representative is moved accord-
ingly; if the plugin’s representative is resized, the application’s representative is resized
accordingly. This gives the user the impression he/she is interacting with the plugin’s rep-
resentative, while in reality he/she is interacting with the application’s security-sensitive
representative.

3.2 Design Choices

The foundation of the design is to have the user installed two distinct software stacks
on his computer.
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One is the common setup, providing the user’s applications, services, games, et cetera.
On top of this stack runs the user’s web browser. The components of this software stack
are not trusted.

The web application, containing security-sensible data, runs on a separate software
stack on the same machine, in parallel to the untrusted software. Each component
on the stack, including the web application, is trusted by the user to confirm to the
security policy. While it is often possible that common users or applications can modify
the untrusted software stack to a certain amount, this behavior should not be possible
within the trusted stack, i.e. a web browser could provide the option of automatically
downloading untrusted add-ons, and install them in the user’s home directory. It should
however never be able to install a component in the trusted software stack. Ideally each
component of the trusted stack is installed by a privileged user, who carefully reviews
the component first.

Both, browser and application, are connected via a trusted channel, i.e. an IPC
mechanism, provided by the operating system.

The design is illustrated in Figure 3.1. It isolates web browser and application from
each other. To provide this in an effective way, one needs to separate the following items,
as mentioned in Section 3.1.1:

• address spaces, i.e. the application’s current state,

• output to the display device, and

• user input.

To increase the usability, the composed output of browser and web application should
look to the user as if the application’s output was a just another component of the loaded
web page. This is done by providing a plugin which connects the web page to the web
application and allows for the embedding of the application’s output into the web page.

The rest of this section describes the separation of the browser’s and web application’s
address spaces, the details of embedding an application’s output channel into a web page
and the input channel’s properties.

3.2.1 Address-Space Separation

Address-space separation puts an effective barrier between the trusted application’s data
and the web browser. This provides confidentiality and integrity to the application’s con-
tent. Because many errors do not propagate over address-space boundaries, it provides
some sort of sandbox to the application, such that errors in the web browser cannot
easily compromise the application’s availability.

The separation of different processes address spaces is a standard feature in today’s
operating systems, which guarantees its availability on a wide range of platforms.

Plugin

The plugin is a module of the web browser. It runs in the browser’s address space and
is therefore suspect of being compromised by an attack. Thus, the plugin is not trusted.
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Figure 3.1: The design is based on a trusted and an untrusted software stack. The
output of browser and application is combined by the user interface. Trusted
components are colored green.

A plugin instance does not contain application data, especially no data that is sensitive
with respect to security. Its only task is to act as a proxy between the web browser and
the web application and control starting and stopping the server process.

Each plugin module is loaded by the web browser’s built-in plugin loader. This will
typically happen when a web page requests the use of a plugin. The tags <embed> and
<object> are common HTML syntax for that case. Each plugin module is associated
with one or more MIME content types [FB96]. The browser checks all plugin’s content
types against the type requested by the web page and selects the correct module.

When the plugin module has been loaded and the browser requests the creation of
a new instance of the provided service, the plugin starts an application process from
a trusted source and establishes a connection. The named HTML tags allow for the
specification of parameters. These are passed as program options to the application.

Starting the application needs to be done in a way that does not allow the plugin
instance to stop it afterward without the application’s consent. For example, if the
plugin instance is capable of stopping the application directly, an attacker, who has
control over the plugin’s address space, could do exactly this and provoke a denial of
service.

The only way for the instance to stop the application should be sending a quit message
and requesting the shutdown. This guarantees the application’s availability, even if the
plugin instance is compromised. The exact mechanism of such a design depends strongly
on the underlying operating system. A very general idea is to let the trusted software
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stack provide a component, which starts applications for the plugin. This service has to
be the only way for a plugin instance to start a new application. It has to make sure
that no untrusted part of the system is able to stop the application afterward.

After the initial setup phase is finished, a plugin instance only acts as a mediator
between the web browser and the web application.

Web application

The web application is a trusted component, running on top of a trusted software stack.
It contains all algorithms and application data, especially the security-critical ones. An
application is started by the plugin whenever the browser requests a new instance of the
plugin. There is exactly one application per plugin instance.

Each web application provides its own input and output facilities to the user. These
facilities are separated from the rest of the user interface and provide the user with a
trusted path for interacting with the web application.

Very often an application needs to interact with other components in the system,
e.g. connecting to a web server via network. Because the application implements a
trusted service, it should interact with other trusted services as much as possible. The
application therefore refers to its underlying trusted software stack. Imagine a web
application implementing a service that provides online-banking facilities. The bank’s
web page starts the application on the user’s computer and passes over some parameter
to signal it of where to connect to the bank’s server. The application then uses the
network system of its underlying trusted software stack to connect to the bank1.

IPC between Plugin Instance and Web Application

The plugin instance indicates to the application of how to adapt to changes in the
browser’s output. The application therefore listens on the IPC channel for incoming
commands from its associated plugin instance.

Because of the weak connection between plugin instance and web application, there
are only few commands to handle. These do

• the initial setup,

• window handling, and

• allowing the plugin instance to signal its shutdown.

An important point here is, that the application only reacts on commands coming from
its associated plugin instance. For reasons of security, it may not accept commands from
other sources. Else an attacker from the outside could send malicious commands to the
application, e.g. provoke a denial of service by signaling the application to quit its
service.

1Of course, additional encryption and authentication protocols need to be implemented when trans-
ferring data over the network. These are, however, outside the scope of this work.

18



3.2 Design Choices

In the initial setup phase the plugin instance is loaded by the user’s web page. It starts
the application process. The application then needs to call back to its plugin instance,
to signal that it is waiting for commands. Depending an the underlying IPC channel,
plugin instance and application often need to exchange some id value that make them
addressable by each other, e.g. a process id or task number. Except for this initial setup,
there should preferably not exist a channel from application to its plugin instance.

When the user unloads the web page, the plugin instance is about to be destroyed. It
now signals to the application to quit its service. It therefore send the application a Quit
command. As mentioned before, in a correct implementation there should not be a way
for the plugin instance to kill the application process directly, to make the application’s
isolation more effective.

Information on window handling details can be found in the next subsection.

3.2.2 Output

The user typically interacts with a plugin’s instance via the underlying graphical user
interface. The web browser therefore provides each instance with a native window, where
it can draw to and receive input from.

Because this window is known by the untrusted browser it is not trusted as well.
Everything written to the window is supposed to be read by an attacker. The system
needs to provide a secure channel from the web application to the output device.

The solution is to establish an overlay over the native window. This overlay is simply
another window or drawing area that is displayed in front of the plugin-window’s position.
It provides a secure output channel by definition. It is up to the implementation to ensure
that this assumption holds.

To provide features of availability, i.e. being visible on the screen, and integrity,
i.e. not displaying compromised content, the overlay is only controlled by one trusted
component, namely the application. Also the window system has to provide labeling
information where each overlay is clearly identifiable by the end user. This sets up a
trusted path between the user and the application. To guarantee confidentiality of the
presented information, the window system may not allow for grabbing screenshots of
this overlay.

If the overlay’s visual appearance is designed similar to the surrounding web page, the
whole system is completely transparent to the user. Because the overlay is perceived
as being part of a web page, the user can easily associate each overlay with its corre-
sponding web page. Because the overlay looks and behaves like the plugin instance’s
native window, the user does not need to change his/her habits when interacting with
the secure context. On the other hand, it is still possible for the application programmer
to indicate the secure context to the user by displaying some special visual appearance
in the overlay, e.g a red border along the overlay’s edges that mark the trusted channels
boundaries.
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The Overlay’s State on the Screen

To keep the state of the overlay in sync with the plugin window, the plugin instance
tracks the user’s input and searches for certain events on its associated native window
or one of its parent windows. These events are

• moving,

• resizing, and

• changing the visibility state.

The window tracker examines these events, coming from the native window system,
and computes the overlay’s new position and visibility. This new state is sent to the
application which, in turn, adjusts the overlay’s appearance.

The important point here is that the application has the option of ignoring such state
messages. Otherwise, if an attacker gets control of the window tracker, he/she could
remove the secure overlay and display a corrupt overlay instead. Preventing such an
attack automatically is complicated. A simpler approach is to allow the user to control
whether the application accepts the instance’s commands or ignores them. This can be
provided as a separated button in the trusted user interface.

3.2.3 Input

Similar to the output, there needs to be a secure channel between the user’s input device
and the application.

To guarantee some sort of confidentiality, this channel must not allow for tracking
key strokes or mouse input by third-party applications. Additionally it must not allow
third-parties applications to send events to the overlay. Such a feature would compromise
integrity or availability of the channel.

The formerly established overlay is used as secure input channel. The user, interacting
with the plugin window, e.g. clicking buttons or entering text, is in reality interacting
with the overlay that is drawn in front of the plugin window. Because the overlay is
separated from the rest of the window system, logging its input events is not possible
anymore. Again, it is up to the actual implementation to provide this isolation.
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The implementation is based on Fiasco, an L4 microkernel, and some basic system
services, e.g. a memory manager, a program loader, a network service, and a file provider.
A detailed description of the this software stack (Figure 4.1) can be found in [HHF+05].

The L4 system is used because of the small size of its components. This work is
implemented on top of the TUDOS environment created by the Dresden University of
Technology. Depending on the configuration, the application’s security-critical compo-
nents can have a Trusted Computing Base of only around 300,000 lines of code.

On top of the L4 system runs L4Linux, a port of the Linux kernel to L4 operating
systems [HHW98]. It provides the end-user’s work environment. This typically consists
of the well-known Unix utilities, an X server and the user’s desktop environment.

Graphical output is provided by Nitpicker [FH05], a minimalistic graphical environ-
ment for the L4 operating system. The X server uses Nitpicker for its input and output
and is treated as any other Nitpicker client. Section 4.2 contains details about Nitpicker.
More information is found in [FH04].

A Mozilla web browser runs in the X environment as a normal X client.
The actual implementation, is build on top of the Mozilla Plugin API, which is de-

scribed in Section 4.1, and Nitpicker. With this software setup, we can get both, a small
Trusted Computing Base for the security-critical components and a decent desktop en-
vironment for the user to do his/her work. Figure 4.1 illustrates this.

Figure 4.1: The software stack includes the Fiasco kernel, L4env, L4Linux, X, and
Mozilla. Trusted components are colored green.
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The complete software stack is based on standard components. No extra programming
and very little customization is needed. All components are available under Open-Source
licenses.

4.1 Mozilla Plugin API

The Mozilla Plugin API [Moz07] (NPAPI) is a set of functions built into Mozilla browsers
to allow for the extension of websites by third-party plugins.

A plugin is a shared library, loaded by the browser at run time. Each library exports
the symbol NP_GetMimeDescription. It is called by the browser and returns a set of
MIME content types, handled by the library.

When a website requests a mime-typed object, the browser loads the plugin library
into its address space and creates a new instance to start a session. At the end of a
session the instance is destroyed and the plugin library gets unloaded by the browser.

Several distinct instances of each plugin can be in use at the same time. In the process
of creating a new instance of the plugin, the browser and the plugin library exchange a
set of function pointers that allow them to call each others functions.

The web browser’s functions, supplied to the plugin, allow for getting or setting various
browser properties and for allocating or freeing memory.

The plugin’s functions, supplied to the browser, allow for getting or setting various
plugin properties and allow the browser to assign a native window to the plugin, i.e an
X11 window id. This window is used by the plugin to draw its output and receive input
events from the underlying window system.

NPAPI was first introduced by Netscape 2.0 and has been in wide use for more then 10
years now. It has been ported to at least three different platforms and is supported not
only by Mozilla-based web browsers, but also by Konqueror, Opera and their derivatives.
This facilitates for providing browser independence of the presented design approach.

4.2 Nitpicker

Nitpicker [FH05] is a very simple window environment for the L4 operating system.
It provides the programmer with some simple abstractions of the graphic display.

The application draws into buffers which are just continuous areas in main memory,
describing RGB pixel data. Each buffer is made visible by establishing a view on the
screen. A view displays the buffer on the visual output device. Each buffer and view is
owned by exactly the application that created them.

Input is handled in a similar way. The user interacts with a view on the screen and
the view’s application receives an event message from Nitpicker.

Security has been the major design goal of Nitpicker. An application only knows and
controls its own buffers and views. It can neither see the complete composed screen
nor receive other application’s input events. Additionally Nitpicker provides labeling
facilities, such that end users know which view corresponds to which application, i.e a
trusted path. This guarantees the properties of secure channels for input and output.
Nitpicker’s code complexity is lower than 2,000 lines of code.
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Because of Nitpicker’s superior security features, an overlay is implemented by a Nit-
picker view.

4.3 Implementation Details

The implementation consists of two major components. On the untrusted side, there is
a plugin that is loaded by the web browser and handles the connection of application
and web page. On the trusted side, there is a framework that handles the command
messages, coming from the plugin. Both sides are connected by L4 IPC mechanisms.

4.3.1 Plugin

The plugin is a shared library for the Mozilla browser. It is loaded by the browser at
run time, based on the associated MIME content types.

A plugin is embedded into an HTML file with the tags <embed> or <object>. A MIME
content type is supplied as parameter to these tags. When the web browser wants the
loaded plugin library to create a new instance of itself, it calls the libraries symbol NP_-
New and passes the content-type string. The value of this string is used to start the
correct web application on the trusted L4 software stack.

MIME-Content-Type Configuration

The plugin’s MIME types are configured in a textual configuration file. The file contains
the MIME type description for each MIME type to be handled by the client. A descrip-
tion consists of a MIME type, an associated L4 server program, i.e. the web application,
and a descriptive string.

The configuration file is intended to be read-only for unprivileged users, so only a
privileged user can install new plugins. Giving unprivileged users write permissions
would allow attackers to install additional malicious services or remove trusted ones.

After being loaded into memory, the plugin is queried by the browser for a list of its
MIME types. It reads the configuration file, composes, and returns an output string
from this data1. This string is then parsed by the browser to determine the plugin’s
facilities.

Starting and Stopping an Application

Starting a web application needs to be implemented in the correct way. Otherwise, an
attacker that controls the right components of the untrusted software stack can simply
kill the application’s task and therefore compromise its availability.

The application is a separate L4 task. Each L4 task has an owner task that is allowed
to kill it. By default, this is the process that started the task. In this case, this would

1Some browsers cache these output strings between sessions until a new version of the shared library is
installed. Adding or removing entries from the configuration file is therefore not necessarily detected.
A simple solution is to touch [fsf] the plugin library’s file when the configuration file has changed.
The browser then detects the library’s new time stamp and updates its caches.
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be the plugin’s process, i.e the web browser. An attacker, who controls the browser, can
now simply kill the application’s L4 task and provoke a denial of service.

The solution is to make the plugin instance fork a separate helper process which then
starts the application task. After having done that, the helper returns the application’s
task id via a pipe and exits.

With this startup protocol, the application’s owner is the helper process, which is
already gone and can therefore not be compromised.

If the plugin instance wants its application to quit, it’s only option is to send a Quit
message, asking to application to exit by itself. The application now has the option to
quit or stay alive.

Interaction with the X Window System

Each instance of the plugin receives an associated X window from the browser. This
window is intended to be used as interface between plugin instance and user.

In this case, all security-sensitive input and output is done by the web application via
Nitpicker. The application maintains a Nitpicker view, which is displayed at the position
and size of the plugin instance’s X window. This gives the end user the impression of
working with the plugin window, while he/she is working with the Nitpicker view instead.

To keep the view in sync with the window, the plugin instance tracks the events coming
from the X system and updates the view’s geometry and visibility state (Figure 4.2).
Ironically X’ inability to provide any security features becomes very useful here.

For each window, the plugin instance forks a child process, dedicated to this task.
This process is called window tracker.

The window tracker first builds a list containing the plugin window and its parent
windows in ascending order. This is called window stack. It then registers for X events
on these windows.

The window tracker now examines each incoming event and sorts out those, that
describe the geometry or visibility of the window. Only a small number of events are in-
teresting here. These are most notably the events typed as MotionNotify, GravityNotify,
and ConfigureNotify for geometry changes and MapNotify, UnmapNotify, and Visibil-
ityNotify for visibility changes. An event typed as DestroyNotify signal the window’s
destruction.

When processing a geometry event, the tracker walks through the whole window stack
and computes the instance’s window’s global position and visible region. To compute
the global position the tracker simply adds up all windows positions. To determine the
visible region, the tracker takes the window stack’s first entry and makes its geometry
the currently visible region. It then walks up the stack by one and clips the currently
visible region against the geometry of the current stack entry’s window. The result of
this clip becomes the new visible region. Successively doing this while walking up the
complete stack results in the visible region of the plugin instance’s window.

X distinguishes between various mapping and visibility states for its windows. These
are Mapped, Unmapped, Visible, PartlyVisible and Invisible. Nitpicker views only know
the states IsVisible and IsNotVisible. Therefore we can reduce the complex X states
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Figure 4.2: The overlay is kept in sync with the plugin’s window by tracking X events
and sending the overlay’s new state to the application. Trusted components
are colored green.
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to these two cases. Mapped, Visible, and PartlyVisible are mapped to IsVisible while
Unmapped and Invisible are mapped to IsNotVisible.

After successfully processing an event, the window tracker sends the view’s new state
to its application task, which updates the view’s appearance on the screen. It then
returns to the beginning of the event loop.

When the a plugin instance’s window gets revoked by the browser, the client kills
the associated window tracker. Because each instance of the plugin can only have one
window at a time, there is never more than one additional process for each instance.

4.3.2 Web Application

The web application is implemented as an L4 task running in the trusted L4 environment.
It links against a framework that handles the interaction with the client.

Each application is started and stopped by a plugin instance, such that each applica-
tion is associated with one instance. Starting and stopping an application on demand
has the benefit of not wasting the system’s resources with unused, waiting applications.
A non-existing task also cannot be target of an attack.

General overview

On startup, the application opens a connection to Nitpicker and creates an output buffer
and view. It then initializes the implementation’s framework with the Nitpicker connec-
tion, the view and a set of callback functions for incoming messages from the plugin.
When the framework’s init function returns, its main message handler runs as a service
thread in the background.

The application continues its execution without the need to keep track of any plugin
details. It renders its output to the Nitpicker buffers and receives input events via
the Nitpicker view, it has supplied to the framework. All this is similar to a common
Nitpicker application.

The framework’s thread waits for IPC messages, coming from the plugin. These
messages tell the application about the current position and visible region of the native
window as well as its visibility state. When the window is visible, the server displays the
supplied Nitpicker view as an overlay. This view displays its buffer’s content according
to the plugin window’s properties.

Because the framework is completely generic and fully separated from the application
code, each Nitpicker application can be turned into a web application with only a few
lines of code.

Communication Setup

One problem for the plugin side is to find the correct framework thread in the first place.
The application is started by the plugin instance via the L4 loader mechanism. This
way, a instance only knows its application’s task id, but not the id of the application’s
thread that handles the communication, i.e. the thread with the framework’s message
handler.
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The solution is the implementation of a channel back to the plugin instance. Therefore,
the plugin instance contains a thread which allows for the reception of the application’s
correct thread id.

The application is provided with the channel’s server’s thread id. This value is passed
as program argument. It now calls this thread and sends it the complete thread id of
the message handler.

After reception, the plugin instance knows where to send its command messages. The
channel’s thread is now stopped. It is not needed anymore and would only provide some
interface for an attacker to interfere with the plugin.

Also, a plugin instance only waits for a given amount of time for the application to
call, because if a website uses several instances at the same time, one needs to make
sure that a failed startup of one of these instances does not propagate to the others. For
example, if the first of two applications on a web page crashes while it is loaded, the
plugin will continue with the second application after some time. It is then up to the
web page to ensure that it can be operated correctly.

Selectively Reacting on Messages

Because the browser could be compromised by an attack, the application needs to provide
the user with a way of restricting the plugin’s influence, i.e. the end user has to be able
to override the plugin’s command messages.

To solve this problem, the framework provides some hooks into its message handlers.
An application programmer using the framework for his/her plugins, can provide a call-
back functions for each message type.

If the framework receives a message, it first calls the registered function. The applica-
tion then has the possibility to react on this message, e.g. increase the display buffer on
a Resize message. Each callback function returns a Boolean value. If this is True, the
current message is processed, otherwise the message is dropped. If the user is provided
with a switch to disable the message handling, e.g. a separated button on the screen,
he/she can decoupled an application completely from the plugin. Nitpicker’s feature of
labeling views gives the user a hint when the command messages might be compromised
and decoupling is needed.

While security that relies on explicit user interaction is fragile [Yee03], this mechanism
is still better than just letting the framework process possibly compromised commands.
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5 Evaluation

An evaluation is done in terms of security and overhead.

5.1 Security

Security has been defined in terms of confidentiality, integrity and availability of infor-
mation. Requirements on these qualities are defined by a security policy. A system is
called secure if it reliably implements a given security policy.

The design, presented in this work, allows for the reliable implementation of a se-
curity policy. This section describes why this is the case and compares the presented
implementation to the common Linux setup.

By separating the security-sensitive components from the rest of the system, improve-
ments on all three qualities of security can be achieved. It is possible to implement a
security policy with very strict requirements on confidentiality, integrity and availability
of information.

Because of the strong isolation, it is much more complicated for an attacker to access
security-sensitive information from input, output, or the application itself. An attacker
can not

• read the application’s input and output,

• get security-sensitive data by having access to the browser’s address space, or

• simply provoke a denial of the application’s service by crashing the web browser.

I tested these scenarios in a common browser setup1 and on top of the presented
implementation.

I used xeyes to track mouse events entered into an application. The common setup
allowed xeyes to receive these events. With the secure setup, this was not possible. I did
not explicitly test output logging because the presented implementation already relies
on that functionality.

Getting access to the browser’s address space was done as described in Section 1.3. I
used a plugin to trace API calls between the web browser and some third-party service
plugins. At the end of each test I had a complete log of all their communication, including
passed arguments and return values. This makes it possible to easily read and write the
security-sensitive memory content of the plugin instance in the common setup. In the
secure setup this is also possible, but the plugin here only acts as a proxy between the

1My system is a Debian Etch Linux with Xorg 7.1 and Firefox 2.0.11.
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browser and the application. It does not contain any security-sensitive data. This makes
the attack useless.

A final test was about the robustness of the design. I crashed the browser process to
see if that could possibly harm the application’s availability. This was the case in the
common setup. If the browser crashed, all loaded web pages are not available anymore.
In the secure setup, this was not the case. A crash of the browser led to the unavailability
of the loaded web pages, but the application’s overlay was still visible and the application
was working as expected.

The results of my tests come from the strong isolation of browser and application.
There are still cases where both connect with each other. These are rare and only occur
to make the application’s output behave similar to a common plugin, e.g. change its
position or size when the user manipulates the surrounding window. The user always
has the option of disabling this behavior, such that the application is fully separated
from the browser.

In general, the presented design provides an increase in security over the common
setup. Attacks on the browser or its environment, as described in Section 1.3, do not
work anymore.

If an attacker wants to break security, he/she now has to attack the trusted software
stack. The security of this stack relies on the quality of the trusted components that are
used. If one of these components is broken, any security mechanism might be useless.

It is hardly possible to measure software quality in absolute values. Therefore, quality
is here defined as the number of errors in a software. The less the number of errors is,
the higher is the quality.

The number of errors can be estimated. Therefore, the minimal number of trusted
lines of code2 between the presented implementation and a common software stack on
Linux is compared. A conclusion is then drawn from statistical data.

Counting the number of lines of code is a very simple method of analysis. When
doing this there are some details to be kept in mind. It is assumed that similar packages
use similar programming language. It is quite meaningless to compare different imple-
mentations of the same algorithm if these implementations use very different languages,
especially if one of these languages is specialized for algorithm’s problem domain3. Most
of the components in the software stack are implemented in C or C++, so this assump-
tion holds.

Further it is assumed that the programmers of similar components have a similar level
of experience. It seems rather unlikely that an expert on programming has as many
programming errors in his code as a novice programmer, even if the novice programmer
has a higher knowledge of the problem domain.

As mentioned before, the number of code lines in the Trusted Computing Base for the
classic plugin design is quite large. On a Linux system it is more than 10 million lines.
Table 5.1 shows measurements for some common components.

2The numbers of lines of code where generated using David A. Wheeler’s ’SLOCCount’.
3One could argue that the use of a specialized language results in less lines of code and therefore less

errors in the implementation. While I see the point, I have not been able to find any reliable data
on that topic, so I do not assume this here.
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5.1 Security

Component Lines of Code
Linux kernel 2.6.23.14 5,497,571
GNU C library 2.7 980,574
Xorg 7.3 566,328
Gtk+ 2.10 513,090
Mozilla Firefox 2.0.0.11 2,783,739∑

10,341,302

Table 5.1: These are the lines of code of some typical components in the Linux software
stack. Each of them contributes to a common plugin’s Trusted Computing
Base.

A common assumption is that there is one error per 1000 lines of code. For the given
setup, this gives a total number of errors somewhere near 10,000 errors. Even if there
is no intention to attack this system, an error might be exposed by chance, which can
result in a loss of security.

Component Lines of Code
Fiasco kernel 97,138
UC C library 199,190
System services (roottask, names, dm_phys, loader, bmodfs) 16,729
Nitpicker 1,815
Framework library 2,952∑

317,824

Table 5.2: These are the lines of code of the major components in the L4 environment.
The Trusted Computing Base of a plugin is substantially smaller than on a
Linux-based system.

In an L4 environment the application’s Trusted Computing Base is significantly lower.
As shown in Table 5.2 it is somewhere near 300,000 lines of code. Using the same one-
error-per-1000-lines assumption as above, the estimated number of errors is 30 times
smaller than before, near 300 errors.

My conclusion is that a web application, running on the isolated L4 software stack,
is less error prone and therefore very likely more secure than the same implementation
running as conventional plugin library on a common Linux system.

The concrete numbers of lines of code can be doubted. Depending on the configuration
and compile-time options, the source code that is finally compiled into binaries can vary.
Some components, e.g. the Linux kernel or Xorg, come with various device drivers
included, where the user only runs a small number of them. But even though the user
might only run 10 percent of the Linux stack’s code, the point of my argumentation
remains true.
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5.2 Overhead

Another issue is the speed of operation. The presented implementation is based on a
microkernel system, which are commonly suspected of being slow in their execution.

The implementation’s overhead depends mainly on two factors: the overhead of the
underlying IPC operations and the performance of the secure overlay’s display refresh.
Both issues are discussed in this section, but in rather general terms. Also, I have not
measured any of them explicitly. I found this pointless, because this work focuses on
security, not optimization.

All communication in this microkernel system is based on the L4 IPC mechanism.
This IPC was designed with the overhead of context switching in mind. It is therefore
faster then low-level communication in many other operating systems.

With the framework, IPC mostly occurs when the plugin’s window is moved or resized.
These operations are implemented as Short IPC, where values are passed from sender to
receiver via processor registers. No expensive memory copying is involved here.

The test machine is an AMD Sempron 2200+. I did some real-world tests, i.e. moving
the window, switching between programs and dragging other windows around. All these
tests result in IPC operations that notify the application that some property of the
overlay has changed.

In fact, I have not been able to notice any serious delay while working. There is a
small delay when the plugin is started but this is related to hard-disk IO and mostly
negligible.

The tests and results for the overlay’s display output are similar. Nitpicker provides a
display driver based on standard VESA modes. It is not highly optimized but provides
sufficient speed for working.

Testing the display’s speed is done with some OpenGL software rendering. The test
is based on a Nitpicker port of Mesa3D [mes], a free implementation of OpenGL.

A version of the famous program glxgears, shown in Figure 5.1, displays rotating gears
in a Nitpicker view. Successively porting it to the framework implementation allowed
me to run it similar to a web application.

The demo’s default frame rate is 20 Hz. I have been able to run four instances at the
same time without much noticeable delays in display refresh.

I do not think that display speed is a limiting factor. There is also a lot of optimization
possible. Nitpicker’s display driver is not optimized for speed and the port of OpenGL
uses a rather inefficient form of double buffering that includes coping between the display
buffers. If modern rendering techniques where applied to this components, there should
be no speed difference to implementations on Linux or Windows.
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Figure 5.1: The glxgears demo displays 3 rotating gears.
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6 Future Work

The first and foremost task is the implementation of a real application on top of the
framework. An idea is to port Java to the trusted software stack of this setup, such
that programmers can implement Java applets which automatically use the framework
internally. Imaginable use cases include online-banking websites, ticket-booking services,
online shops, or services in a company’s Intranet.

With some work it should be possible to use common, third-party plugins with this
design. The idea is to add a program to the trusted software stack that loads the plugin
and provides it with an NPAPI interface. This program than acts as the trusted web
application. A minimal X environment has to be added as well. The common plugin
now runs on top of this X and uses its Xlib API. The X outputs the plugin’s display
to the Nitpicker view. Such a setup can load any plugin, while providing the presented
security properties.

The implementation can still be extended. At the moment, it only provides Mozilla’s
basic plugin interface. Some more work has to be done to provide scripting or even
Java support on the plugin side. On the other hand, I do not expect that the use of
these features makes much sense here. The current, simple interface has its benefits in
security.

Another task is to port the software to Linux- and X-based systems. By now users
have to install the underlying L4 system. Some people might prefer a pure Linux im-
plementation, because Linux is much more common and might provide some additional
features that L4 is missing, e.g. specialized network services.

Each web application would be a separate Linux process in the system. It had to be
forked by the browser itself or some external loader service1. Securing the input and
output channels is more complicated. An idea is to use the XACE extension of newer X
servers for achieving some access control over X clients. An evaluation has to be done if
this works out.

The Linux version would lack the feature of a small Trusted Computing Base with
all its benefits. On the other hand, having a widely-distributed system that provides
greatly improved security at the user’s end point is surely better then today’s situation
with almost no security at all.

1Having this as the default behavior is not only wishful in terms of security but would also result in a
much more reliable browser. An error-prone plugin could not easily crash the browser anymore.

35



6 Future Work

36



7 Conclusion

This work presented a new approach for implementing secure web applications. It is
almost completely browser independent by using the plugin mechanism, provided by
modern web browsers.

The design is based on separating the application’s (1) address space, (2) output,
and (3) input from the rest of the system. The isolated application is provided with
a trusted channel to the input and output devices. It is executed on top of a trusted
software stack. The application’s visual appearance is integrated with its surrounding
web page via the browser’s plugin mechanism.

This separation results in an increased (1) confidentiality, (2) integrity, and (3) avail-
ability of the web application’s data and service.

Together with the design, an implementation is provided, that uses (1) L4 services,
(2) L4Linux, and (3) Mozilla as its basic components. The user employs his/her Linux
software in the L4Linux environment. If the web browser supports Mozilla’s Plugin API,
any security critical application can now be implemented in the L4 environment. This
fulfills all established design goals and has a Trusted Computing Base of only 3̃00,000
lines of code.
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